[1]鲁进利,周宾,许忠林,等.不同截面微通道中流动阻力特性[J].东南大学学报(自然科学版),2011,41(3):554-557.[doi:10.3969/j.issn.1001-0505.2011.03.024]
 Lu Jinli,Zhou Bin,Xu Zhonglin,et al.Flow characteristics in microchannel with different cross-section[J].Journal of Southeast University (Natural Science Edition),2011,41(3):554-557.[doi:10.3969/j.issn.1001-0505.2011.03.024]
点击复制

不同截面微通道中流动阻力特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第3期
页码:
554-557
栏目:
能源与动力工程
出版日期:
2011-05-20

文章信息/Info

Title:
Flow characteristics in microchannel with different cross-section
作者:
鲁进利1周宾2许忠林3蒋洁1郭雨含1郝英立12
(1东南大学能源与环境学院,南京 210096)
(2东南大学空间科学与技术研究院,南京210096)
(3上海卫星工程研究所,上海 200240)
Author(s):
Lu Jinli1Zhou Bin2Xu Zhonglin3Jiang Jie1Guo Yuhan1Hao Yingli12
(1 School of Energy and Environment, Southeast University, Nanjing 210096, China)
(2 Institute of Space Science and Technology, Southeast University, Nanjing 210096, China)
(3 Shanghai Institute of Satellite Engineering, Shanghai 200240, China)
关键词:
微通道摩擦系数局部损失流动特性截面形状
Keywords:
microchannel friction factor local loss flow characteristics cross-section geometry
分类号:
T124
DOI:
10.3969/j.issn.1001-0505.2011.03.024
摘要:
实验研究了微通道内去离子水的流动阻力特性, 微通道当量直径范围De=0.210~1.069 mm, 雷诺数范围Re=102~104,截面形状分为矩形、半圆形及三角形. 通过测量微通道沿程压降及出、入口局部压降随流量变化关系, 获得了沿程阻力系数及局部阻力系数. 结果表明: 当截面形状相同时, 摩擦阻力系数随着当量直径的减小而降低; 当量直径接近,截面形状不同时,其摩擦阻力系数也不相同; 进、出口局部阻力系数变化趋势一致, 且入口局部阻力系数要比出口的大; 流型发生转变的临界雷诺数Rec=600~1 000.
Abstract:
The flow characteristics of deionized water in microchannels investigated experimentally. The hydraulic diameter of microchannels range from 0. 210 to 1. 069 mm, and the Reynolds number range from 102 to 104. The cross-section is comprised of rectangular, semicircular and triangular. The pressure drop along microchannel and local pressure drop at inlet and outlet are measured and the friction factor and local resistance coefficient are obtained. Results show that the friction factor decreases with decreasing hydraulic diameter under the same cross-section geometry. The friction factor is also different with cross-section geometry even if the hydraulic diameter is similar. The variation trend of local friction factor at inlet and outlet are consistent in microchannels, but the values of friction factor at inlet are bigger than at outlet. The result also shows that the critical Reynolds number of flow pattern transition range from 600 to 1 000.

参考文献/References:

[1] Peng X F, Peterson G P, Wang B X. Friction flow characteristics of water flowing through rectangular microchannels [J]. Experimental Heat Transfer, 1994, 7(4): 249-264.
[2] Mala G M, Li D Q. Flow characteristics of water in microtubes [J]. International Journal of Heat and Fluid Flow, 1999, 20(2): 142-148.
[3] Xu B, Ooi K T, Wong N T. Experimental investigation of flow friction for liquid flow in microchannels [J]. International Communications in Heat Mass Transfer, 2000, 27(8): 1165-1176.
[4] Judy J, Maynes D. Characterization of frictional pressure drop for liquid flow through microchannels [J]. International Journal of Heat and Mass Transfer, 2002, 45(17): 3477-3489.
[5] Brutin D, Tadrist L. Experimental friction factor of a liquid flow in microtubes [J]. Physics of Fluids, 2003, 15(3): 653-661.
[6] Wu H Y, Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios [J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2519-2525.
[7] Sharp K V, Adrian R J. Transition from laminar to turbulent flow in liquid filled microtubes [J]. Experiments in Fluids, 2004, 36(5): 741-747.
[8] Celata G P, Cumo M, Mcphail S,et al. Characterization of fluid dynamic behaviour and channel wall effects in microtube [J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 135-143.
[9] Steinke M E, Kandlikar S G. Single-phase liquid friction factors in microchannels [J]. International Journal of Thermal Science, 2006, 45(11): 1073-1083.
[10] Hrnjak P, Tu X. Single phase pressure drop in microchannels [J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 2-14.
[11] Dutkowski K. Experimental investigations of Poiseuille number laminar flow of water and air in microchannels [J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 5983-5990.
[12] Mokrani O, Bourouga B, Castelain B, et al. Fluid flow and convective heat transfer in flat microchannels [J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6): 1337-1352.
[13] Moffat R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.

相似文献/References:

[1]董梅萼.毛毡与聚甲醛间摩擦系数的动态测量研究[J].东南大学学报(自然科学版),1986,16(3):57.[doi:10.3969/j.issn.1001-0505.1986.03.006]
 Dong Meie.Dynamic Measurement Study of the Friction Coefficient between Felt and Polyformaldehyde[J].Journal of Southeast University (Natural Science Edition),1986,16(3):57.[doi:10.3969/j.issn.1001-0505.1986.03.006]
[2]吴嘉峰,陈永平,施明恒,等.三角形微通道中环状冷凝过程的数值模拟[J].东南大学学报(自然科学版),2007,37(3):423.[doi:10.3969/j.issn.1001-0505.2007.03.014]
 Wu Jiafeng,Chen Yongping,Shi Mingheng,et al.Numerical simulation for annular condensation flow in triangular microchannels[J].Journal of Southeast University (Natural Science Edition),2007,37(3):423.[doi:10.3969/j.issn.1001-0505.2007.03.014]

备注/Memo

备注/Memo:
作者简介:鲁进利(1982—),男,博士生;周宾(联系人),男,博士,讲师,zhoubinde@seu.edu.cn.
基金项目:国家自然科学基金资助项目(50676020,50906013)、国家重点基础研究发展计划(973计划)资助项目(2006CB300404)、教育部新教师基金资助项目(20090092120064).
引文格式: 鲁进利,周宾,许忠林,等.不同截面微通道中流动阻力特性[J].东南大学学报:自然科学版,2011,41(3):554-557.[doi:10.3969/j.issn.1001-0505.2011.03.024]
更新日期/Last Update: 2011-05-20