[1]王磊,罗永峰.空间网格结构抗震分析中的阈值法理论[J].东南大学学报(自然科学版),2011,41(3):636-641.[doi:10.3969/j.issn.1001-0505.2011.03.039]
 Wang Lei,Luo Yongfeng.Threshold value method in seismic analysis of spatial latticed structures[J].Journal of Southeast University (Natural Science Edition),2011,41(3):636-641.[doi:10.3969/j.issn.1001-0505.2011.03.039]
点击复制

空间网格结构抗震分析中的阈值法理论()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第3期
页码:
636-641
栏目:
土木工程
出版日期:
2011-05-20

文章信息/Info

Title:
Threshold value method in seismic analysis of spatial latticed structures
作者:
王磊罗永峰
(同济大学建筑工程系,上海 200092)
Author(s):
Wang LeiLuo Yongfeng
(Department of Building Engineering, Tongji University, Shanghai 200092, China)
关键词:
空间网格结构构件承剪型结构构件轴力型结构主振型阈值法
Keywords:
spatial latticed structure member shear resistance structures member axial resistance structures dominant vibration mode threshold value method
分类号:
TU311.3
DOI:
10.3969/j.issn.1001-0505.2011.03.039
摘要:
为建立空间网格结构振型遴选准则,总结了空间网格结构地震反应计算方法及其存在的问题,通过基本模型比较给出构件承剪型结构和构件轴力型结构的新概念,并指出质量参与系数法为仅适于构件承剪型结构截取振型的计算方法.针对空间网格结构的特点,从振型能量参与的角度,引入动力功参与系数和静力功参与系数的概念,并导出了相应的计算公式,得到了空间网格结构模态遴选的理论依据,提出一种基于振型能量遴选振型的新方法(阈值法).通过多高层和单层球面网壳算例分析,验证了质量参与系数法是阈值法的退化形式,同时证明,采用阈值法时,仅选取少数主要振型,就可求得网格结构满足设计精度要求的地震反应数值解.通过与时程法的对比,进一步说明了阈值法较高的计算效率.
Abstract:
In order to establish a criterion for vibration mode selection of spatial latticed structures, current seismic analysis methods are summarized. New concepts of member shear resistance structures (MSRS) and member axial resistance structures (MARS) are defined. It is pointed out that the mass participation factor method is only suitable for structures with lateral stiffness depending on member shear. According to dynamic characteristics of spatial latticed structures and from the viewpoint of vibration mode energy contribution, dynamic work participation factor and static work participation factor are introduced. The corresponding formulas are derived, and a theoretical basis for vibration mode selection is obtained. A new vibration mode selection method, named threshold value method (TVM), is proposed for modes selection of the spatial latticed structures. Two numerical examples are analyzed for verification. The results show that the criterion of mass participation factors is a degradation type of threshold value method. When TVM is adopted, higher accuracy of dynamic responses can be obtained with only a few dominant vibration modes selected. TVM is efficient comparing with the time history analysis method.

参考文献/References:

[1] 中国建筑科学研究院.JGJ7—2010 空间网格结构技术规程[S].北京:中国建筑工业出版社,2010.
[2] Nakayama M,Sasaki Y,Masuda K,et al.An efficient method for selection of vibration modes contributory to wind response on dome-like roofs[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,73(1):31-43.
[3] 田玉基,杨庆山.大跨度屋盖结构脉动风振响应的参与振型[J].哈尔滨工业大学学报,2009,41(6):147-149.
  Tian Yuji,Yang Qingshan.Dominant modes of fluctuating wind-induced response for large span roof[J].Journal of Harbin Institute of Technology,2009,41(6):147-149.(in Chinese)
[4] Kato S,Nakazawa S,Saito K.Two-mode based estimation of equivalent seismic loads and static estimation of dynamic response of reticular domes supported by ductile substructures[J].Journal of the International Association for Shell and Spatial Structures,2006,47(1):35-52.
[5] 杨木旺,罗永峰.大跨空间结构的竖向静力弹塑性分析[J].力学季刊,2007,28(3):436-442.
  Yang Muwang,Luo Yongfeng.Vertical static elasto-plastic analysis of long span spatial structure[J].Chinese Quarterly of Mechanics,2007,28(3):436-442.(in Chinese)
[6] Nour-Omid B,Clough R W.Dynamic analysis of structures using Lanczos co-ordinates[J].Earthquake Engineering &Structural Dynamics,1984,12(4):565-577.
[7] Wilson E L.Three dimensional static and dynamic analysis of structures:a physical approach with emphasis on earthquake engineering[M].Berkeley,CA,USA:Computers &Structures Inc,2002.
[8] Clough R,Penzien J.Dynamics of structures[M].Berkeley,CA,USA:Computers &Structures Inc,1995.
[9] Hansteen O E,Bell K.On the accuracy of mode superposition analysis in structural dynamics[J].Earthquake Engineering &Structural Dynamics,1979,7(5):405-411.

相似文献/References:

[1]叶继红,申会谦.风荷载下空间网格结构疲劳性能[J].东南大学学报(自然科学版),2016,46(4):842.[doi:10.3969/j.issn.1001-0505.2016.04.028]
 Ye Jihong,Shen Huiqian.Fatigue performance of spatial latticed structures under wind loads[J].Journal of Southeast University (Natural Science Edition),2016,46(3):842.[doi:10.3969/j.issn.1001-0505.2016.04.028]

备注/Memo

备注/Memo:
作者简介:王磊(1978—),男,博士生;罗永峰(联系人),男,博士,教授,博士生导师,yfluo93@tongji.edu.cn.
基金项目:高等学校博士学科点专项科研基金资助项目(20070247002).
引文格式: 王磊,罗永峰.空间网格结构抗震分析中的阈值法理论[J].东南大学学报:自然科学版,2011,41(3):636-641.[doi:10.3969/j.issn.1001-0505.2011.03.039]
更新日期/Last Update: 2011-05-20