[1]陈正纲,金立左,费树岷.基于标记SMC-PHD滤波器的视觉多目标跟踪[J].东南大学学报(自然科学版),2011,41(4):711-716.[doi:10.3969/j.issn.1001-0505.2011.04.011]
 Chen Zhengang,Jin Lizuo,Fei Shumin.Multiple visual target tracking with labeled SMC-PHD filter[J].Journal of Southeast University (Natural Science Edition),2011,41(4):711-716.[doi:10.3969/j.issn.1001-0505.2011.04.011]
点击复制

基于标记SMC-PHD滤波器的视觉多目标跟踪()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第4期
页码:
711-716
栏目:
计算机科学与工程
出版日期:
2011-07-20

文章信息/Info

Title:
Multiple visual target tracking with labeled SMC-PHD filter
作者:
陈正纲金立左费树岷
(东南大学自动化学院, 南京 210096)
Author(s):
Chen ZhengangJin LizuoFei Shumin
(School of Automation, Southeast University, Nanjing 210096, China)
关键词:
多目标跟踪概率假设密度有限集统计背景建模
Keywords:
multi-target tracking probability hypothesis density finite set statistics background modeling
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2011.04.011
摘要:
提出了基于序贯蒙特卡罗概率假设密度滤波器(SMC-PHDF)的视觉多目标跟踪算法.W4算法对观测场景进行背景建模和运动目标检测,获取可能目标在观测场景中的位置信息作为PHDF的输入.SMC-PHD滤波器对检测结果进行滤波,实现对观测场景中运动目标数量和目标状态的估计.传统SMC-PHDF由于不对目标进行标记避免了数据关联,但同时也丧失了对单个目标航迹进行持续跟踪的能力.为此,提出采用标记粒子及最近邻聚类构建关联决策,根据粒子标记经重采样后的统计分布计算最大关联概率实现当前目标与航迹的时域关联.实验证明,当观测场景中的目标数目、状态随时间变化且检测结果存在虚警情况下,该算法能较好地估计多目标数量和状态,其时域关联准确性比MHT算法更高.
Abstract:
A multiple visual targets tracking algorithm based on sequential Monte Carlo probability hypothesis density filter (SMC-PHDF) is proposed. Background modeling and dynamic object detection was implemented on observed scenes via algorithm of W4. Positions of possible objects were gotten as the input of PHDF. SMC-PHDF had the detection results filtered, and achieved estimates of object number and state. Traditional SMC-PHDF, which does not label objects to avoid data association, is unable to continuously track individual object. Labeled particles as well as nearest clustering are proposed to construct association strategy, and the association of current objects and former trajectories can be realized via inheriting and propagation of particles. Experiments verify that this algorithm can get good estimates of object number and state when target number as well as states changes and clutters exist. Its accuracy on association is higher than that of MHT (multiple hypotheses tracking).

参考文献/References:

[1] Mahler R.An introduction to multisource-multitarget statistics and applications [M].Eagan,MN,USA:Lockheed Martin Technical Monograph,2000.
[2] Mahler R.Multitarget bayes filtering via first-order multitarget moments [J].IEEE Trans on Aerospace and Electronic Systems,2003,39 (3):1152-1178.
[3] Vo B-N,Singh S,Doucet A.Sequential Monte Carlo implementation of the PHD filter for multi-target tracking [C]//Proceedings of the Sixth International Conference of Information Fusion.Cairns,Australia,2003:792-799.
[4] Panta K,Vo B-N,Singh S.Improved probability hypothesis density(PHD) filter for multi-target tracking [C]//Proceedings of International Conference on Intelligent Sensing and Information.Bangalore,India,2005:213-218.
[5] Lin L,Bar-Shalom Y,Kirubarajan T.Tracking labeling and PHD filter for multi-target tracking [J].IEEE Trans on Aerospace and Electronic Systems,2006,42 (3):778-795.
[6] Clark D E,Bell J.Bayesian multiple target tracking in forward scan sonar image using the PHD filter [J].IEE Radar,Sonar and Navigation,2005,152 (5):327-334.
[7] Kemper J,Hauschildt D.Passive infrared localization with a probability hypothesis density filter [C]//The 7th Workshop on Positioning Navigation and Communication. Dresden,Germany,2010:68-76.
[8] Haritaoglu I,Harwood D,Davis L S.W4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):809-830.
[9] Jacques J C S,Jung C R,Musse S R.Background subtraction and shadow detection in grayscale video sequences[C]//Brazilian Symposium on Computer Graphics and Image Processing.Natal,Brazil,2005:189-196.
[10] Bar-Shalom Y,Li X-R.Multitarget-multisensor tracking:principles and techniques [M].Storrs,CT,USA:YBS Publishing,1995.
[11] Rao S K.Modified gain extended Kalman filter with application to bearings-only passive manoeuvring target tracking[J].IEE Radar,Sonar and Navigation,2005,152 (4):239-244.

备注/Memo

备注/Memo:
作者简介:陈正纲(1982—),男,博士生;费树岷(联系人),男,博士,教授,博士生导师,smfei@seu.edu.cn.
引文格式: 陈正纲,金立左,费树岷.基于标记SMC-PHD滤波器的视觉多目标跟踪[J].东南大学学报:自然科学版,2011,41(4):711-716.[doi:10.3969/j.issn.1001-0505.2011.04.011]
更新日期/Last Update: 2011-07-20