[1]陈汉武,肖芳英.基于初等变换的量子码构造[J].东南大学学报(自然科学版),2011,41(5):934-937.[doi:10.3969/j.issn.1001-0505.2011.05.008]
 Chen Hanwu,Xiao Fangying.Construction of quantum codes based on elementary transformations[J].Journal of Southeast University (Natural Science Edition),2011,41(5):934-937.[doi:10.3969/j.issn.1001-0505.2011.05.008]
点击复制

基于初等变换的量子码构造()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第5期
页码:
934-937
栏目:
计算机科学与工程
出版日期:
2011-09-20

文章信息/Info

Title:
Construction of quantum codes based on elementary transformations
作者:
陈汉武12肖芳英1
(1东南大学计算机科学与工程学院,南京 211189)(2东南大学计算机网络和信息集成教育部重点实验室,南京 211189)
Author(s):
Chen Hanwu12Xiao Fangying1
(1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China)
(2 Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 211189, China)
关键词:
量子纠错码生成矩阵奇偶校验矩阵初等行变换截短码
Keywords:
quantum error-correcting codes generator matrix parity-check matrix elementary row transformation punctured code
分类号:
TP387
DOI:
10.3969/j.issn.1001-0505.2011.05.008
摘要:
为了探讨一般量子稳定子码的简单构造方法,在满足对偶包含条件CC的约束下,提出了从一类量子稳定子码C=[[N,K,D]]q到量子稳定子码C′=[[N-1,K+1,D′]]q的基于矩阵初等变换的构造方法.该方法的优点在于码字构造时,量子稳定子码和经典纠错码都是在Fq上进行操作,无须做Fq2到Fq上的映射转换,也无须使用复杂的数学运算,仅使用内积空间和初等矩阵行变换的相关概念即可构造一类码字的衍生码,因此该构造算法可提高时空效率.另外,该方法构造性的证明简单、易懂,且易于计算机及各种硬件系统实现.研究理论结果显示,该方法对一类量子码的构造非常实用.
Abstract:
To investigate the general technique for simply constructing quantum stabilizer code, when the conditions of the dual constraints (CC) are met, a new constructing method based on elementary transformations is put forward, by which a class of quantum stabilizer codes C′=[[N-1, K+1, D′]]q can be constructed from another class of quantum stabilizer codes C=[[N, K, D]]q with CC. In the codes structure, quantum stabilizer codes and classical error correction codes operate on the same field Fq, eliminating the conversion from Fq2 to Fq and complicated mathematical operations. Using only the concepts of inner product space and elementary row transformation matrix, a class of derivative code of the codes can be constructed, and the efficiency of time and space of the algorithm can be improved. Constructive proof of the method is simple and easy to understand. In addition, the code construction and check are easy to implement, especially applicable to computer. Theoretical results show that the method is helpful for the construction of a class of quantum codes.

参考文献/References:

[1] Ketkar A,Klappenecker A,Kumar S,et al.Nonbinary stabilizer codes over finite fields [J].IEEE Transactions on Information Theory,2006,52(11):4892-4914.
[2] Calderbank A R,Rains E M,Shor P W,et al.Quantum error correction via codes over GF(4) [J].IEEE Transactions on Information Theory,1998,44(4):1369-1387.
[3] Feng K.Quantum codes [[6,2,3]]p,[[7,3,3]]p(p≥3)exist [J].IEEE Transactions on Information Theory,2002,48(8):2384-2391.
[4] Ashikhmin A,Knill E.Nonbinary quantum stabilizer codes[J].IEEE Transactions on Information Theory,2001,47(7):3065-3072.
[5] Aoki T,Takahashi G,Kajiya T,et al.Quantum error correction beyond qubits [J].Nature Physics,2009,5:541-546.
[6] Kim J L,Walker J.Nonbinary quantum error-correcting codes from algebraic curves[J].Discrete Mathematics,2008,308(14):3115-3124.
[7] Steane A M.Enlargement of Calderbank-Shor-Steane quantum codes [J].IEEE Transactions on Information Theory,1999,45(7):2492-2495.
[8] 冯克勤,陈豪.量子纠错码 [M].北京:科学出版社,2010.
[9] 北京大学数学系几何与代数教研室前代数小组.高等代数 [M].3版.北京:高等教育出版社,2003.
[10] 陈鲁生,沈世镒.编码理论基础 [M].北京:高等教育出版社,2005.

相似文献/References:

[1]樊继豪,陈汉武,李荣贵.非对称量子乘积-张量积码[J].东南大学学报(自然科学版),2017,47(1):18.[doi:10.3969/j.issn.1001-0505.2017.01.004]
 Fan Jihao,Chen Hanwu,Li Ronggui.Asymmetric quantum product and tensor product codes[J].Journal of Southeast University (Natural Science Edition),2017,47(5):18.[doi:10.3969/j.issn.1001-0505.2017.01.004]

备注/Memo

备注/Memo:
作者简介:陈汉武(1955—),男,博士,教授,博士生导师,hw_chen@seu.edu.cn.
基金项目:国家自然科学基金资助项目(60873101)、东南大学计算机网络和信息集成教育部重点实验室开放基金资助项目.
引文格式: 陈汉武,肖芳英.基于初等变换的量子码构造[J].东南大学学报:自然科学版,2011,41(5):934-937.[doi:10.3969/j.issn.1001-0505.2011.05.008]
更新日期/Last Update: 2011-09-20