[1]柏俊杰,李建清,陈从颜,等.虚拟环境热触觉的显示装置与材质识别实验[J].东南大学学报(自然科学版),2011,41(6):1197-1201.[doi:10.3969/j.issn.1001-0505.2011.06.014]
 Bai Junjie,Li Jianqing,Cheng Congyan,et al.Thermal tactile display device and material discrimination experiments in virtual environment[J].Journal of Southeast University (Natural Science Edition),2011,41(6):1197-1201.[doi:10.3969/j.issn.1001-0505.2011.06.014]
点击复制

虚拟环境热触觉的显示装置与材质识别实验()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第6期
页码:
1197-1201
栏目:
自动化
出版日期:
2011-11-20

文章信息/Info

Title:
Thermal tactile display device and material discrimination experiments in virtual environment
作者:
柏俊杰12李建清1陈从颜1吴剑进1蔡凤1
(1东南大学仪器科学与工程学院,南京 210096)
(2重庆科技学院电气与信息工程学院,重庆 401331)
Author(s):
Bai Junjie12Li Jianqing1Cheng Congyan1Wu Jianjin1Cai Feng1
(1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)
(2School of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)
关键词:
热触觉感知 热触觉显示 材质识别 虚拟现实
Keywords:
thermal tactile perception thermal tactile display material discrimination virtual reality
分类号:
TP24
DOI:
10.3969/j.issn.1001-0505.2011.06.014
摘要:
基于半无限体模型,研究了热触觉感知的机理.设计了热触觉显示装置,通过控制半导体制冷器的温度变化来实现热触觉显示.该装置的控温范围为-10~60℃,温度分辨率和精度分别为0.02和0.1℃,升温或降温速率大于10℃/s.定制了柔性镍金属薄片式温度传感器,尺寸为8 mm×20 mm×0.6 mm,时间常数τ<0.15 s.检测了手指与物体接触面处手指皮肤的实时温度变化,并基于此温度变化控制热触觉显示装置,使热触觉接触面的温度变化无限逼近真实热触觉的手指皮肤的温度变化,从而复现人手指触摸真实物体的热触觉.开展了虚拟环境材质识别实验,材质识别正确率在70%以上.实验结果表明,该热触觉显示装置和热触觉复现方法能够复现真实的热触觉,有很强的真实感和沉浸感.
Abstract:
Based on semi-infinite model, the mechanism of thermal tactile perception was studied. The thermal tactile display device (TTDD), on which thermal tactile display can be realized by controlling the temperature of semiconductor cooler, was designed. Temperature range of the device is -10 to 60 ℃. The temperature resolution and the accuracy of the device are 0. 02 and 0. 1 ℃ respectively, and heating or cooling rate is greater than 10 ℃ / s. The flexible thin-film temperature sensor of nickel was customized. The dimension of the sensor is 8 mm×20 mm×0. 6 mm and the time constant is less than 0. 15 s. At the contact surface between fingers and object, the real-time temperature of finger skin (RTFS) was measured. The temperature of the contact surface of the TTDD was controlled to approximate the RTFS as much as possible, which is the way to reproduce the thermal tactile perception of the real world. In the virtual environment, the experiments of material discrimination were carried out and the rate of correctness is above 70%. Experimental results show that the TTDD and the method of reproducing thermal tactile perception can reproduce the thermal tactile perception of the real world with a strong sense of reality and immersion.

参考文献/References:

[1] Békésy G V. Human skin perception of traveling waves similar to those on the cochlea [J]. Journal of the Acoustical Society of America, 1955, 27(5): 830-841.
[2] Jones L A, Ho H. Warm or cool, large or small? The challenge of thermal displays [J]. IEEE Transactions on Haptics, 2008, 1(1): 53-70.
[3] Bergmann Tiest W M, Kappers A M L. Discrimination of thermal diffusivity [C]//Proceedings of the 3rd Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Salt Lake City, UT, USA, 2009: 635-639.
[4] Galie J, Ho H, Jones L A. Influence of contact conditions on thermal responses of the hand [C]//Proceedings of the 3rd Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Salt Lake City, UT, USA, 2009: 587-592.
[5] Jones L A, Berris M. Material discrimination and thermal perception [C]//Proceedings of the 11th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Los Angeles, CA, USA, 2003: 171-178.
[6] Yang G H, Kwon D S. Effect of temperature in perceiving tactile stimulus using a thermo-tactile display [C]//International Conference on Control, Automation and Systems. Seoul, Korea, 2008: 266-271.
[7] Yang G H, Jones L A, Kwon D S. Use of simulated thermal cues for material discrimination and identification with a multi-fingered display [J]. Presence: Teleoperators and Virtual Environments, 2008, 17 (1): 29-42.
[8] Ho H, Jones L A. Modeling the thermal responses of the skin surface during hand-object interactions [J]. Journal of Biomechanical Engineering, 2008, 130(2): 021005-1-021005-8.
[9] Ho H, Jones L A. Material identification using real and simulated thermal cues [C]//Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, USA, 2004: 2462-2465.
[10] Shang D, Carnahan H. The integration and dissociation of thermal and frictional cues during material identification [C]//Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems. Reno, NV, USA, 2008: 11-16.
[11] Ho H, Jones L A. Contribution of thermal cues to material discrimination and localization [J]. Perception & Psychophysics, 2006, 68 (1): 118-128.
[12] 吴剑锋, 宋爱国, 李建清. 一种三维力反馈手控器[J]. 传感技术学报,2010, 23 (10):1417-1420.
  Wu Jianfeng, Song Aiguo, Li Jianqing. A three-dimensional force reflecting hand controller [J]. Chinese Journal of Sensors and Actuators, 2010, 23 (10): 1417-1420. (in Chinese)

备注/Memo

备注/Memo:
作者简介: 柏俊杰(1976—),男,博士生,讲师; 李建清(联系人),男,博士,教授,博士生导师,ljq@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60876088)、国家高技术研究发展计划(863计划)资助项目(2009AA01Z314).
引文格式: 柏俊杰,李建清,陈从颜,等.虚拟环境热触觉的显示装置与材质识别实验[J].东南大学学报:自然科学版,2011,41(6):1197-1201. [doi:10.3969/j.issn.1001-0505.2011.06.014]
更新日期/Last Update: 2011-11-20