[1]陈云钢,郭正兴,刘家彬,等.全封闭碳纤维与高强钢丝复合拉索的弹性模量[J].东南大学学报(自然科学版),2011,41(6):1266-1272.[doi:10.3969/j.issn.1001-0505.2011.06.026]
 Chen Yungang,Guo Zhengxing,Liu Jiabin,et al.Elastic modulus of fully-enclosed composite cable made of CFRP and high-strength steel strand[J].Journal of Southeast University (Natural Science Edition),2011,41(6):1266-1272.[doi:10.3969/j.issn.1001-0505.2011.06.026]
点击复制

全封闭碳纤维与高强钢丝复合拉索的弹性模量()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第6期
页码:
1266-1272
栏目:
材料科学与工程
出版日期:
2011-11-20

文章信息/Info

Title:
Elastic modulus of fully-enclosed composite cable made of CFRP and high-strength steel strand
作者:
陈云钢12郭正兴1刘家彬1常瀚3
(1东南大学土木工程学院,南京 210096)
(2安徽工业大学建筑工程学院,马鞍山 243002)
(3苏州工业园区设计研究院,苏州 223200)
Author(s):
Chen Yungang12Guo Zhengxing1Liu Jiabin1Chang Han3
(1School of Civil Engineering, Southeast University, Nanjing 210096, China)
(2School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)
(3Suzhou Industry Park Design and Research Institute, Suzhou 223200, China)
关键词:
全封闭复合拉索 高强钢丝束 碳纤维筋 协调工作机理 弹性模量
Keywords:
fully-enclosed composite cable high-strength steel strand CFRP(carbon fiber reinforced polymer) coordination mechanism elastic modulus
分类号:
TU511.32;U448.27
DOI:
10.3969/j.issn.1001-0505.2011.06.026
摘要:
探讨了全封闭复合拉索的协调工作机理,即要求芯部高强钢丝束与碳纤维筋弹性模量接近或相等; 研究了高强钢丝束捻距与弹性模量间的关系; 推导了37股高强钢丝束弹性模量的计算表达式,通过有限元分析验证了表达式的正确性.试验表明,碳纤维筋弹性模量可以达到与高强钢丝束的弹性模量相近的要求.结论表明:复合拉索中的索力按照碳纤维筋与高强钢丝束的轴向刚度进行分配,全封闭复合拉索中碳纤维筋与高强钢丝束的弹性模量相等.在整体锚具的张拉下,复合拉索中碳纤维筋与高强钢丝束的变形一致,弹性模量相等决定了索力按照复合拉索中碳纤维筋与高强钢丝束的截面比例进行分配,能够确保复合拉索索体的协同作用.高强钢丝束的弹性模量与其捻距及扭转角相关,随着捻距的减小,扭转角的增大,高强钢丝束的弹性模量降低.
Abstract:
Coordination mechanism of the fully-enclosed composite cable is investigated, and the requirements that the elastic modulus of the high-strength steel strand and CFRP(carbon fiber reinforced polymer) should be equal is proposed in this paper. Firstly, the relationship between the twist and the elastic modulus of the high-strength steel strand is studied. Then, the calculation formula of the elastic modulus of the high-strength steel strand with 37 strands is derived. Finally, the correctness of the formula is verified by finite element analysis. Test results show that the elastic modulus of CFRP can reach that of high-strength steel strand. It is concluded that the force of the composite cable is distributed in accordance with the axial stiffness of carbon fiber and high-strength steel strand, and the elastic modulus of both CFRP and high-strength steel strand in fully-enclosed composite cable are equal. With the pull of the whole anchorage, the deformation of CFRP in fully-enclosed composite cable is consistent with the deformation of the high-strength steel strand. Equivalence of the elastic modulus determines that the force is distributed in accordance with the ratio of the cross-section of the carbon fiber and the high-strength steel strand, which can ensure the coordination mechanism of the fully-enclosed composite cable. The elastic modulus of the high-strength steel strand is associated with the twist and the torsion angle. With the decrease of the twist and increase of torsion angle, the elastic modulus of the high-strength steel strand decreases.

参考文献/References:

[1] 刘元泉,陈惟珍,徐俊, 等.拉索劣化性能研究[J].公路,2004(9): 28-32.
[2] 应磊东. 碳纤维索在大跨度缆索承重桥梁上的应用研究[D].杭州:浙江工业大学建筑工程学院,2007.
[3] 刘荣桂,龚向华,李成绩,等. 斜拉桥CFRP索锚固性能试验[J].工业建筑,2006,36(8):29-32.
  Liu Ronggui, Gong Xianghua, Li Chengji,et al. Study on anchoring property of CFRP cables for stayed bridges[J]. Industrial Construction, 2006,36(8):29-32.(in Chinese)
[4] 蒋田勇,方志. CFRP筋复合式锚具锚固性能的试验研究[J].土木工程学报,2010,43(2):79-87.
  Jiang Tianyong, Fang Zhi. Experimental investigation on the performance of wedge-bond anchors for CFRP tendons[J]. China Civil Engineering Journal, 2010, 43(2): 79-87.(in Chinese)
[5] Chen Yungang,Guo Zhengxing,Liu Jiabin,et al. Research on fully-enclosed composite cable made with CFRP and high-tensile steel wire[J]. Advanced Materials Research, 2011, 250-253: 1927-1931.
[6] 孔庆凯,万鹏. 钢绞线的基本力学性能及其有限元方法模拟[J]. 四川建筑,2003,23(1):20-22.
[7] 王应军,李卓球,宋显辉. 钢绞线弹性模量的理论计算及其影响因素分析[J]. 武汉理工大学学报,2004,26(4):80-82.
  Wang Yingjun, Li Zhuoqiu, Song Xianhui. Theoretical computing and analysis affecting factors on stranded wire’s elastic module[J]. Journal of Wuhan University of Technology, 2004, 26(4):80-82. (in Chinese)
[8] 张洪信,管殿柱. 有限元基础理论与ANSYS11.0应用[M]. 北京:机械工业出版社, 2009.
[9] 尚晓江,邱峰,赵海峰. ANSYS结构有限元高级分析方法与范例应用[M]. 北京:中国水利水电出版社, 2010.

备注/Memo

备注/Memo:
作者简介: 陈云钢(1975—),男,博士生,讲师; 郭正兴(联系人),男,教授,博士生导师,guozx195608@126.com.
引文格式: 陈云钢,郭正兴,刘家彬,等.全封闭碳纤维与高强钢丝复合拉索的弹性模量[J].东南大学学报:自然科学版,2011,41(6):1266-1272. [doi:10.3969/j.issn.1001-0505.2011.06.026]
更新日期/Last Update: 2011-11-20