[1]赵金宝,邓卫,王建.基于贝叶斯网络的城市道路交通事故分析[J].东南大学学报(自然科学版),2011,41(6):1300-1306.[doi:10.3969/j.issn.1001-0505.2011.06.032]
 Zhao Jinbao,Deng Wei,Wang Jian.Bayesian network-based urban road traffic accidents analysis[J].Journal of Southeast University (Natural Science Edition),2011,41(6):1300-1306.[doi:10.3969/j.issn.1001-0505.2011.06.032]
点击复制

基于贝叶斯网络的城市道路交通事故分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第6期
页码:
1300-1306
栏目:
交通运输工程
出版日期:
2011-11-20

文章信息/Info

Title:
Bayesian network-based urban road traffic accidents analysis
作者:
赵金宝邓卫王建
(东南大学交通学院, 南京 210096)
Author(s):
Zhao JinbaoDeng WeiWang Jian
(School of Transportation, Southeast University, Nanjing 210096, China)
关键词:
贝叶斯网络 城市道路 交通事故 Dirichlet分布
Keywords:
Bayesian network urban road traffic accidents Dirichlet distribution
分类号:
U491.3
DOI:
10.3969/j.issn.1001-0505.2011.06.032
摘要:
以5 190起交通事故数据为分析依据,基于专家知识和数据融合方法建立了城市道路交通事故分析的贝叶斯网络结构.利用服从Dirichlet分布的贝叶斯方法对贝叶斯网络进行参数学习.结合网络模型,应用联合树引擎推断了在车辆类型、事故地点和交通参与者等因素的影响下交通事故类型概率分布.结果表明:客货车等大型车辆发生侧面碰撞的可能性为39.96%,高于其他车型; 助力车和自行车在正面碰撞引发事故的可能性分别为39.01%和39.44%; 因制动不当引发尾随碰撞事故的可能性为46.12%; 转向不当而引发的侧面碰撞可能性为55.72%; 随交叉口进口道和出口道数量的增加,发生侧面碰撞的概率会增加.贝叶斯网络模型具有较高的精确度,相关研究可以为城市道路管理部门深入了解交通事故诱发因素和提高城市道路交通系统安全水平提供依据.
Abstract:
On the basis of 5 190 recorded urban road accidents, the topological structure of BN(Bayesian network) is formed with references to expert knowledge and data fusion method. Bayesian method is used to complete the process of parameter learning with Dirichlet prior distribution. Under the influences of some factors, such as the vehicle type, accident location, and traffic participant, the probability of different traffic accident type are inferred using junction tree engine based on BN structure and recorded accidents. Inference results indicate that the probability of side collision caused by heavy vehicles is 39. 96%, higher than other vehicle types. The probabilities of frontal collision caused by electric bike and bicycle are 39. 01% and 39. 44% respectively. Brake failure may cause the occurrence of rear-end collision and the inferred probability is 46. 12%. Steering failure may cause side collision with a inferred probability of 55. 72%. The more the accesses of an intersection, the higher the side collision probability is. Moreover, BN method has a high accuracy. The results of this paper can provide basis for road management department to study the characteristics of urban road traffic accidents and improve safety level of urban road traffic.

参考文献/References:

[1] Sany R Z, Francis P D N. Improving traffic safety: a new systems approach, 1830 [R]. Washington DC: Transportation Research Board of the National Academies, 2003.
[2] 郑安文. 我国高速公路交通事故的基本特点与预防对策[J]. 公路交通科技, 2002, 19(4): 109-112.
  Zheng Anwen. Basic characteristic and prevention measures of motorway traffic accident in China[J]. Journal of Highway and Transportation Research and Development, 2002, 19(4): 109-112. (in Chinese)
[3] Luxhoj J T. Probabilistic causal analysis for system safety risk assessments in commercial air transport [C]//Workshop on Investigating and Reporting of Incidents and Accidents.Williamsburg,VA, USA,2003: 17-38.
[4] Norrington L,Quigley J,Russell A,et a1.Modeling the reliability of search and rescue operations with Bayesian belief networks[J]. Reliability Engineering and System Safety, 2008, 93(7): 940-949.
[5] Kim M C, Seong P H. An analytic model for situation assessment of nuclear power plant operators based on Bayesian inference [J]. Reliability Engineering and System Safety, 2006, 91(13): 270-282.
[6] Cafiso S, Cava G L, Montella A. Safety index for evaluation of two-lane rural highways, 2019 [R]. Washington DC: Transportation Research Board of the National Academies, 2007.
[7] Aguilera P A, Fernndez A, Fernndez R, et al. Bayesian networks in environmental modeling [EB/OL]. (2011-07-02)[2011-09-01]. http://www.sciencedirect.com/science/article/pii/S1364815211001472.
[8] Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic network from data[J]. Machine Learning, 1992, 9(4): 309-347.
[9] Maceachern S N. Estimating normal means with a conjugate style Dirichlet process prior[J]. Communications in Statistics: Simulation and Computation, 1994, 23(3): 727-741.
[10] Friedman N, Koller D. Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks[J]. Machine Learning, 2003, 50(1/2): 95-125.
[11] Mitchell T. Machine learning [M]. New York: The McGraw-Hill Companies Inc, 1997.
[12] Huang C, Darwiche A. Inference in belief networks: a procedural guide [J]. International Journal of Approximate Reasoning, 1996, 15(3): 225-263.
[13] Madsen A, Jensen F. Lazy propagation: a junction tree inference algorithm based on lazy evaluation [J]. Artificial Intelligence, 1999, 113(1): 203-245.
[14] Helman P, Veroff R, Atlas S R, et al. A Bayesian network classification methodology for gene expression data[J]. Journal of Computational Biology, 2004, 11(4): 581-615.
[15] 张杰,刘小明,贺玉龙,等.ARIMA模型在交通事故预测中的应用[J].北京工业大学学报, 2007, 33(12): 1295-1299.
  Zhang Jie,Liu Xiaoming,He Yulong, et al. Application of ARIMA model in forecasting traffic accidents [J].Journal of Beijing University of Technology, 2007, 33(12): 1295-1299.(in Chinese)

相似文献/References:

[1]朱光灿,闻德荪.城市道路汽车尾气扩散箱型模式研究[J].东南大学学报(自然科学版),2001,31(4):88.[doi:10.3969/j.issn.1001-0505.2001.04.021]
 Zhu Guangcan,Wen Desun.On Diffusion Box Model of Vehicle Exhaust Gas for Urban Road[J].Journal of Southeast University (Natural Science Edition),2001,31(6):88.[doi:10.3969/j.issn.1001-0505.2001.04.021]
[2]吴静娴,杨敏.基于贝叶斯网络的城市常规公交服务满意度分析模型[J].东南大学学报(自然科学版),2017,47(5):1042.[doi:10.3969/j.issn.1001-0505.2017.05.032]
 Wu Jingxian,Yang Min.Assessment of passenger satisfaction with urban bus service quality using Bayesian networks[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1042.[doi:10.3969/j.issn.1001-0505.2017.05.032]

备注/Memo

备注/Memo:
作者简介: 赵金宝(1987—),男,博士生; 邓卫(联系人),男,博士,教授,博士生导师,dengwei@seu.edu.cn.
基金项目: “十一五”国家科技支撑计划资助项目(2006BAJ18B03)、江苏省普通高校研究生科研创新计划资助项目(CXZZ11_0165).
引文格式: 赵金宝,邓卫,王建.基于贝叶斯网络的城市道路交通事故分析[J].东南大学学报:自然科学版,2011,41(6):1300-1306. [doi:10.3969/j.issn.1001-0505.2011.06.032]
更新日期/Last Update: 2011-11-20