[1]朱军华,余岭.基于时间序列分析与高阶统计矩的结构损伤检测[J].东南大学学报(自然科学版),2012,42(1):137-143.[doi:10.3969/j.issn.1001-0505.2012.01.026]
 Zhu Junhua,Yu Ling.Damage detection based on time series analysis and higher statistical moments[J].Journal of Southeast University (Natural Science Edition),2012,42(1):137-143.[doi:10.3969/j.issn.1001-0505.2012.01.026]
点击复制

基于时间序列分析与高阶统计矩的结构损伤检测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第1期
页码:
137-143
栏目:
数学、物理学、力学
出版日期:
2012-01-18

文章信息/Info

Title:
Damage detection based on time series analysis and higher statistical moments
作者:
朱军华12余岭1
(1暨南大学重大工程灾害与控制教育部重点实验室,广州510632)(2工业和信息化部电子第五研究所,广州510610)
Author(s):
Zhu Junhua12Yu Ling1
(1Key Laboratory of Disaster Forecast and Control in Engineering of Ministry of Education,Jinan University, Guangzhou 510632, China)
(2 The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China)
关键词:
时间序列分析峰度偏度结构损伤检测
Keywords:
time series analysis kurtosis skewness structural damage detection
分类号:
O327;TU311
DOI:
10.3969/j.issn.1001-0505.2012.01.026
摘要:
基于时间序列分析,提出一种有效检测结构非线性损伤的方法.在分析基于AR模型残差均方差指标的基础上,指出传统方法存在损伤信息泄漏的缺陷,特别是对于非线性损伤检测.为提高传统方法损伤检测结果的可靠性,提出采用残差的高阶统计矩——偏度和峰度作为传统指标的补充,提出了3个指标的算术平均和几何平均共6种综合指标,并应用模糊聚类分析实现结构损伤检测.利用考虑了环境因素影响的三层建筑结构模型的非线性损伤实验数据验证了提出的方法.研究表明,6种综合指标对非线性损伤检测的可靠性均高于传统方法,其中以均方差和峰度的几何平均指标检测效果最佳.
Abstract:
Based on time series analysis, a new efficient nonlinear damage detection method is proposed in this paper. The traditional methods, in which the standard deviation of autoregressive (AR) model residual error is defined as damage sensitive index, may have the shortage of damage information loss, especially for the detection of the nonlinear damage. To improve the reliability of the traditional methods for the detection of the nonlinear damage, the higher statistical moments of residual error, such as skewness and kurtosis, are further defined as the complementary damage features to the standard deviation. Six comprehensive damage indexes are developed based on the arithmetic and geometric mean of the statistical moments, and are classified by using fuzzy clustering method to achieve damage detection. A series of the experimental data from a three-story building structure considering the environmental variety are analyzed to validate the viewpoints in this paper. The results from all six new damage indexes show higher reliability than those from traditional methods, and the index obtained from geometric mean of standard deviation and kurtosis has the best performance for all the six damage indexes.

参考文献/References:

[1] Fugate M L,Sohn H,Farrar C R.Vibration-based damage detection using statistical process control[J].Mechanical Systems and Signal Processing,2001,15(4):707-721.
[2] Sohn H,Farrar C R.Damage diagnosis using time series analysis of vibration signals[J].Smart Materials &Structures,2001,10(3):1-6.
[3] Sohn H,Farrar C R,Hunter N F,et al.Structural health monitoring using statistical pattern recognition techniques[J].Journal of Dynamic Systems,Measurement,and Control,2001,123(4):706-712.
[4] da Silva S,Dias Júnior M,Lopes Junior V.Damage detection in a benchmark structure using Ar-Arx models and statistical pattern recognition[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2007,29(2):174-184.
[5] Lu Y,Gao F.A novel time-domain auto-regressive model for structural damage diagnosis[J].Journal of Sound and Vibration,2005,283(3/4/5):1031-1049.
[6] Sohn H,Worden K,Farrar C R.Statistical damage classification under changing environmental and operational conditions[J].Journal of Intelligent Material Systems &Structures,2002,13(9):561-574.
[7] Farrar C R,Lieven N A J.Damage prognosis:the future of structural health monitoring[J].Philosophical Transactions of the Royal Society A,2007,365(1851):623-632.
[8] Worden K,Allen D W,Sohn H,et al.Extreme value statistics for damage detection in mechanical structures[R].Los Alamos,New Mexico:Los Alamos National Laboratory,2002.
[9] Carden E Peter,Brownjohn J M W.Arma modelled time-series classification for structural health monitoring of civil infrastructure[J]. Mechanical Systems and Signal Processing,2008,22(2):295-314.
[10] 范剑青,姚琦伟.非线性时间序列——建模、预测及应用[M].北京:高等教育出版社,2005.
[11] Dyer D,Stewart R M.Detection of rolling element bearing damage by statistical vibration analysis[J].ASME Journal of Mechanical Design,1978,100(2):229-235.
[12] Cacciola P,Impollonia N,Muscolino G.Crack detection and location in a damaged beam vibrating under white noise[J].Computers &Structures,2003,81(18/19):1773-1782.
[13] Wang X,Makis V.Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov-Smirnov test[J].Journal of Sound and Vibration,2009,327(3/4/5):413-423.
[14] da Silva S,Dias Júnior M,Lopes Junior V,et al.Structural damage detection by fuzzy clustering[J].Mechanical Systems and Signal Processing,2008,22(7):1636-1649.
[15] Figueiredo E,Park G,Figueiras J,et al.Structural health monitoring algorithm comparisons using standard data sets[R].Los Alamos,New Mexico:Los Alamos National Laboratory,2009.

相似文献/References:

[1]曾鹏,黄仁.多变量时序模型的典则型研究[J].东南大学学报(自然科学版),1995,25(5):107.[doi:10.3969/j.issn.1001-0505.1995.05.019]
 Zeng Peng,Huang,Ren.The Normalized Form Study of Multi-Variable Time Seies Model[J].Journal of Southeast University (Natural Science Edition),1995,25(1):107.[doi:10.3969/j.issn.1001-0505.1995.05.019]
[2]李荆垠,徐南荣.由时变ARMA模型描述的一类非平稳时间序列的特性[J].东南大学学报(自然科学版),1989,19(2):75.[doi:10.3969/j.issn.1001-0505.1989.02.011]
 Li Jingyin Xu Nanrong (College of Management).The Characteristics of Nonstationary Time Series Described by Time-varying ARMA Models[J].Journal of Southeast University (Natural Science Edition),1989,19(1):75.[doi:10.3969/j.issn.1001-0505.1989.02.011]
[3]曹忻,盛昭瀚,徐南荣.非平稳时间序列的线性预测[J].东南大学学报(自然科学版),1989,19(6):86.[doi:10.3969/j.issn.1001-0505.1989.06.012]
 Cao Xin Sheng Zhaohan Xu Nanrong(College of Management).Linear Prediction of Nonstationary Time Series[J].Journal of Southeast University (Natural Science Edition),1989,19(1):86.[doi:10.3969/j.issn.1001-0505.1989.06.012]
[4]吴少敏,万德钧,黄仁.非线性时间序列的结构辨识[J].东南大学学报(自然科学版),1995,25(2):1.[doi:10.3969/j.issn.1001-0505.1995.02.001]
 Wu Shaomin,Wan,Dejun,et al.The Detective Identification of Nonlinear Time Series Models[J].Journal of Southeast University (Natural Science Edition),1995,25(1):1.[doi:10.3969/j.issn.1001-0505.1995.02.001]
[5]吴少敏,万德钧,黄仁.指数自回归模型的辨识的研究[J].东南大学学报(自然科学版),1994,24(4):96.[doi:10.3969/j.issn.1001-0505.1994.04.017]
 Wu Shaomin,Wan Dejun,et al.On Identification of Exponential Autoregressive Model[J].Journal of Southeast University (Natural Science Edition),1994,24(1):96.[doi:10.3969/j.issn.1001-0505.1994.04.017]

备注/Memo

备注/Memo:
作者简介:朱军华(1980—),男,博士,工程师;余岭(联系人),男,博士,教授,博士生导师,lyu1997@163.com.
基金项目:国家自然科学基金资助项目(50978123,11032005)、广东省自然科学基金资助项目(10151063201000022)、中央高校基本科研业务费专项资金资助项目(21611512).
引文格式: 朱军华,余岭.基于时间序列分析与高阶统计矩的结构损伤检测[J].东南大学学报:自然科学版,2012,42(1):137-143.[doi:10.3969/j.issn.1001-0505.2012.01.026]
更新日期/Last Update: 2012-01-20