[1]黄书强,张震,周继鹏.无线Mesh网络节点聚类属性分析[J].东南大学学报(自然科学版),2012,42(2):219-223.[doi:10.3969/j.issn.1001-0505.2012.02.005]
 Huang Shuqiang,Zhang Zhen,Zhou Jipeng.Clustering attribute analysis on nodes of wireless Mesh networks[J].Journal of Southeast University (Natural Science Edition),2012,42(2):219-223.[doi:10.3969/j.issn.1001-0505.2012.02.005]
点击复制

无线Mesh网络节点聚类属性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第2期
页码:
219-223
栏目:
计算机科学与工程
出版日期:
2012-03-20

文章信息/Info

Title:
Clustering attribute analysis on nodes of wireless Mesh networks
作者:
黄书强1 张震2 周继鹏2
1 暨南大学网络与教育技术中心,广州 510632; 2 暨南大学信息科学技术学院,广州 510632
Author(s):
Huang Shuqiang1 Zhang Zhen2 Zhou Jipeng2
1 Network and Education Technology Center, Jinan University, Guangzhou 510632, China
2 College of Information Science and Technology, Jinan University, Guangzhou 510632, China
关键词:
无线Mesh网络 聚类 网络跳数 k-medoids算法
Keywords:
wireless Mesh networks clustering hop of network k-medoids algorithm
分类号:
TP393
DOI:
10.3969/j.issn.1001-0505.2012.02.005
摘要:
通过分析无线Mesh网络节点空间属性,提出了一种改进的k-medoids网络节点聚类算法.该算法基于聚类思想,将无线Mesh网络中的网关部署问题转化为空间节点数据聚类问题.构建了网络拓扑图的邻接矩阵,并利用邻接矩阵选择具有最多一跳连接节点数的对象作为初始簇中心.然后以网络跳数代替传统聚类算法中的距离参数,将最小化跳数之和作为优化目标,通过迭代方法获得稳定的聚类和分组结果.实验结果表明,离散的网络节点在空间上具有聚类特性,利用该方法可以获得更小的平均跳数和最大跳数,因此可以较好地实现网络节点分组和网关发现.
Abstract:
By analyzing the spatial attribute of nodes of wireless Mesh networks, an improved k-medoids clustering algorithm is proposed. Based on clustering, the algorithm converts the problem of gateway deployment of wireless mesh network into a data clustering problem. In the algorithm, an adjacency matrix of network topology is built and the nodes with most a hop connected nodes are gradually selected as initial cluster centers. Then, the distance parameter between the nodes in the traditional clustering algorithm is replaced by the hop of network. And the optimization object is abstracted as minimizing the sum hops of the network. The nodes are added into different clusters and the last stable clustering and grouping results are obtained by iterative way. The experimental results show that the discrete network nodes have a property of clustering in space. The average hops of networks and the maximum hops of network become smaller by using the proposed algorithm, which can realize reasonable clustering of the network nodes and gateway discovering.

参考文献/References:

[1] Bassam Aoun.Topology optimization in wireless mesh networks[D].Ontario,Canada:University of Waterloo,2006.
[2] He B,Xie B,Agrawal D P.Optimizing deployment of Internet gateway in wireless mesh networks[J].Computer Communications,2008,31(7):1259-1275.
[3] Zhang Yan,Luo Jijun,Hu Honglin.Wireless mesh networking:architectures,protocols and standards[M].New York,USA:Auerbach Publications,2008.
[4] Jason L C,Jose E R.Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery[J].Reliability Engineering & System Safety,2009,94(2):218-228.
[5] Durocher S,Jampani K R,Lubiwb A,et al.Modelling gateway placement in wireless networks:geometric k-centers of unit disc graphs[J].Computational Geometry,2011,44(6):286-302.
[6] 黄书强,周继鹏.基于聚类的无线Mesh网络网关选择及AP分组算法[J].华南理工大学学报,2011,39(4):38-43.
  Huang Shuqiang,Zhou Jipeng.Wireless mesh gateway selecting and AP clustering algorithm based on clustering[J].Journal of South China University of Technology,2011,39(4):38-43.(in Chinese)
[7] Ekram Hossain,Kin Leung.Wireless mesh networks architectures and protocols[M].New York,USA:Springer,2008.
[8] Robinson J,Knightly E W.A performance study of deployment factors in wireless mesh networks[C] //The 26th IEEE International Conference on Computer Communications.Alaska,USA,2007:2054-2062.
[9] 邵峰晶,于忠清.数据挖掘原理与算法[M].北京:中国水利水电出版社,2003.
[10] 邓松,李文敬,刘海涛.数据挖掘原理与SPSS Clementine应用宝典[M].北京:电子工业出版社,2009.

相似文献/References:

[1]刘大峰,廖文和,戴宁,等.散乱点云去噪算法的研究与实现[J].东南大学学报(自然科学版),2007,37(6):1108.[doi:10.3969/j.issn.1001-0505.2007.06.033]
 Liu Dafeng,Liao Wenhe,Dai Ning,et al.Research and implementation for denoising noisy scattered point data[J].Journal of Southeast University (Natural Science Edition),2007,37(2):1108.[doi:10.3969/j.issn.1001-0505.2007.06.033]
[2]宋爱国,陆佶人.舰船噪声目标聚类分析的演化计算方法[J].东南大学学报(自然科学版),1997,27(6):24.[doi:10.3969/j.issn.1001-0505.1997.06.005]
 Song Aiguo,Lu Jiren.Evolutionary Computation for Ship Noise Targets Clustering Analysis[J].Journal of Southeast University (Natural Science Edition),1997,27(2):24.[doi:10.3969/j.issn.1001-0505.1997.06.005]
[3]张三峰,刘铮,吉逸.无线多跳网络中802.11 DCF广播信道接入性能分析[J].东南大学学报(自然科学版),2014,44(1):34.[doi:10.3969/j.issn.1001-0505.2014.01.007]
 Zhang Sanfeng,Liu Zheng,Ji Yi.Performance analysis of 802.11 DCF broadcast channel access in wireless multi-hop networks[J].Journal of Southeast University (Natural Science Edition),2014,44(2):34.[doi:10.3969/j.issn.1001-0505.2014.01.007]
[4]张祥,李星,温韵清,等.语义网虚拟本体构建[J].东南大学学报(自然科学版),2015,45(4):652.[doi:10.3969/j.issn.1001-0505.2015.04.007]
 Zhang Xiang,Li Xing,Wen Yunqing,et al.Building virtual ontologies in semantic web[J].Journal of Southeast University (Natural Science Edition),2015,45(2):652.[doi:10.3969/j.issn.1001-0505.2015.04.007]
[5]高岭,申元,高妮,等.基于文本挖掘的漏洞信息聚类分析[J].东南大学学报(自然科学版),2015,45(5):845.[doi:10.3969/j.issn.1001-0505.2015.05.006]
 Gao Ling,Shen Yuan,Gao Ni,et al.Clustering analysis of vulnerability information based on text mining[J].Journal of Southeast University (Natural Science Edition),2015,45(2):845.[doi:10.3969/j.issn.1001-0505.2015.05.006]
[6]张琳,张进.基于PPIN的社交网络推荐系统[J].东南大学学报(自然科学版),2017,47(3):478.[doi:10.3969/j.issn.1001-0505.2017.03.011]
 Zhang Lin,Zhang Jin.Social network recommendation system based on PPIN[J].Journal of Southeast University (Natural Science Edition),2017,47(2):478.[doi:10.3969/j.issn.1001-0505.2017.03.011]

备注/Memo

备注/Memo:
作者简介: 黄书强(1977—),男,博士,高级工程师, hsq2008@vip.sina.com.
基金项目: 广东省自然科学基金资助项目(S2011040003481, S2011010001525)、广东省高校优秀青年创新人才培养计划资助项目(LYM09029)、中央高校基本科研业务费专项资金资助项目(21611522).
引文格式: 黄书强,张震,周继鹏.无线Mesh网络节点聚类属性分析[J].东南大学学报:自然科学版,2012,42(2):219-223. [doi:10.3969/j.issn.1001-0505.2012.02.005]
更新日期/Last Update: 2012-03-20