[1]李邺,等.一种结合稀疏表示和切比雪夫矩的人脸识别算法[J].东南大学学报(自然科学版),2012,42(2):249-253.[doi:10.3969/j.issn.1001-0505.2012.02.011]
 Li Ye,Chen Beijing,et al.Face recognition algorithm by using sparse representation and Tchebichef moments[J].Journal of Southeast University (Natural Science Edition),2012,42(2):249-253.[doi:10.3969/j.issn.1001-0505.2012.02.011]
点击复制

一种结合稀疏表示和切比雪夫矩的人脸识别算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第2期
页码:
249-253
栏目:
计算机科学与工程
出版日期:
2012-03-20

文章信息/Info

Title:
Face recognition algorithm by using sparse representation and Tchebichef moments
作者:
李邺1 2 陈北京2 3 张旭1 2 舒华忠2
1 东南大学生物科学与医学工程学院,南京 210096; 2 东南大学影像科学与技术实验室,南京 210096; 3 南京信息工程大学计算机与软件学院,南京 210044
Author(s):
Li Ye1 2 Chen Beijing2 3 Zhang Xu1 2 Shu Huazhong2
1 School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
2 Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
3 School of Computer and
关键词:
人脸识别 稀疏表示 切比雪夫矩 压缩感知
Keywords:
face recognition sparse representation Tchebichef moments compressed sensing
分类号:
TP391.4
DOI:
10.3969/j.issn.1001-0505.2012.02.011
摘要:
在基于稀疏表示的人脸识别算法的基础上,利用切比雪夫矩在图像重建及抗噪声方面的良好性能,提出了一种结合稀疏表示和切比雪夫矩的人脸识别算法,对有无加性噪声干扰的人脸图像进行识别.给出了详细的数学推导过程和算法实现步骤,并通过实验对算法进行了验证.针对扩展的Yale B人脸库和AR人脸库的识别结果表明,当特征空间维数为496时,该算法在不同光照条件和不同表情条件下的识别率分别为98.33%和88.72%,在添加椒盐噪声后像素破坏比例小于60%的条件下识别率为100%.与基于随机脸的最近邻分类法、最近子空间分类法及传统SRC算法相比,该算法在抵抗图像的细节信息变化方面具有更好的鲁棒性.
Abstract:
Based on the sparse representation-based classification(SRC)algorithm, taking the advantages of Tchebichef moments in image representation and noise robustness, a face recognition algorithm combining the sparse representation and Tchebichef moments is proposed to recognize the face images with and without additive noise. The mathematical derivation and the specific procedure of the algorithm are given, and the experiments are made to verify the algorithm. The experimental results obtained from the extended Yale B database and the AR database show that when the feature space dimension is 496, the recognition rate of the proposed algorithm is 98.33% and 88.72% under various lighting conditions and expressions, respectively. When the proportion of pixels damaged by salt-pepper noise is less than 60%, the recognition rate is 100%. In terms of the robustness against various image details, this algorithm outperforms the nearest neighbor method, the nearest subspace method and the conventional SRC algorithm all of which are based on the randomfaces.

参考文献/References:

[1] Sinha P,Balas B,Ostrovsky Y,et al.Face recognition by human:nineteen results all computer vision researchers should know about [J].Proceedings of the IEEE,2007,94(11):1948-1962.
[2] 吴巾一,周德龙.人脸识别方法综述 [J].计算机应用研究,2009,26(9):3205-3209.
  Wu Jinyi,Zhou Delong.Survey of face recognition [J].Application Research of Computers,2009,26(9):3205-3209.(in Chinese)
[3] Candès E.Compressive sampling [C] //Proceeding of the International Congress of Mathematics.Madrid,Spain,2006:1433-1452.
[4] Candès E,Wakin M.An introduction to compressive sampling [J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[5] Yang A,Wright J,Ma Y,et al.Feature selection in face recognition:a sparse representation perspective [R].Berkeley,CA,USA:University of California,2007.
[6] Wright J,Ganesh A,Yang A,et al.Robust face recognition via sparse representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
[7] Zenkouar H,Nachit A.Images compression using moments method of orthogonal polynomials [J].Materials Science and Engineering,1997,49(3):211-215.
[8] Mukundan R,Ong S,Lee P.Image analysis by Tchebichef moments [J].IEEE Transactions on Image Processing,2001,10(9):1357-1364.
[9] Donoho D,Romberg J,Tao T.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution [J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.
[10] Georghiads A,Belhumeur P,Kriegman D.From few to many:illumination cone models for face recognition under variable lighting and pose [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
[11] Martinez A,Benavente R.The AR face database [R].West Lafayette,IN,USA:Purdue University,1998.

相似文献/References:

[1]余丰,奚吉,赵力,等.基于CS与K-SVD的欠定盲源分离稀疏分量分析[J].东南大学学报(自然科学版),2011,41(6):1127.[doi:10.3969/j.issn.1001-0505.2011.06.002]
 Yu Feng,Xi Ji,Zhao Li,et al.Sparse presentation of underdetermined blind source separation based on compressed sensing and K-SVD[J].Journal of Southeast University (Natural Science Edition),2011,41(2):1127.[doi:10.3969/j.issn.1001-0505.2011.06.002]
[2]朱永成,陈阳,罗立民,等.基于字典学习的低剂量X-ray CT图像去噪[J].东南大学学报(自然科学版),2012,42(5):864.[doi:10.3969/j.issn.1001-0505.2012.05.013]
 Zhu Yongcheng,Chen Yang,Luo Limin,et al.Dictionary learning based denoising of low-dose X-ray CT image[J].Journal of Southeast University (Natural Science Edition),2012,42(2):864.[doi:10.3969/j.issn.1001-0505.2012.05.013]
[3]黄蓓.一种正交局部鉴别嵌入的人脸识别算法[J].东南大学学报(自然科学版),2013,43(6):1208.[doi:10.3969/j.issn.1001-0505.2013.06.014]
 Huang Bei.Orthogonal local discriminant embedding for face recognition[J].Journal of Southeast University (Natural Science Edition),2013,43(2):1208.[doi:10.3969/j.issn.1001-0505.2013.06.014]
[4]程旭,郭海燕,李拟珺,等.一种基于超像素的局部判别式跟踪算法[J].东南大学学报(自然科学版),2014,44(6):1105.[doi:10.3969/j.issn.1001-0505.2014.06.002]
 Cheng Xu,Guo Haiyan,Li Nijun,et al.Local discriminative tracking algorithm based on superpixel[J].Journal of Southeast University (Natural Science Edition),2014,44(2):1105.[doi:10.3969/j.issn.1001-0505.2014.06.002]
[5]程旭,张毅锋,刘袁,等.基于深度特征的目标跟踪算法[J].东南大学学报(自然科学版),2017,47(1):1.[doi:10.3969/j.issn.1001-0505.2017.01.001]
 Cheng Xu,Zhang Yifeng,Liu Yuan,et al.Object tracking algorithm based on deep feature[J].Journal of Southeast University (Natural Science Edition),2017,47(2):1.[doi:10.3969/j.issn.1001-0505.2017.01.001]

备注/Memo

备注/Memo:
作者简介: 李邺(1987—),女,硕士生; 舒华忠(联系人),男,博士,教授,博士生导师,shu.list@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61073138, 61103141)、教育部博士点基金资助项目(20110092110023).
引文格式: 李邺,陈北京,张旭,等.一种结合稀疏表示和切比雪夫矩的人脸识别算法[J].东南大学学报:自然科学版,2012,42(2):249-253. [doi:10.3969/j.issn.1001-0505.2012.02.011]
更新日期/Last Update: 2012-03-20