[1]王小庆,伍家松,舒华忠.一种DTT域的二维线性卷积算法[J].东南大学学报(自然科学版),2012,42(3):424-427.[doi:10.3969/j.issn.1001-0505.2012.03.006]
 Wang Xiaoqing,Wu Jiasong,Shu Huazhong.Two dimensional linear convolution in discrete trigonometric transform domain[J].Journal of Southeast University (Natural Science Edition),2012,42(3):424-427.[doi:10.3969/j.issn.1001-0505.2012.03.006]
点击复制

一种DTT域的二维线性卷积算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第3期
页码:
424-427
栏目:
计算机科学与工程
出版日期:
2012-05-20

文章信息/Info

Title:
Two dimensional linear convolution in discrete trigonometric transform domain
作者:
王小庆 伍家松 舒华忠
东南大学影像科学与技术实验室, 南京 210096
Author(s):
Wang Xiaoqing Wu Jiasong Shu Huazhong
Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
关键词:
二维DTT 线性卷积 对称
Keywords:
2-D discrete trigonometric transform linear convolution symmetric
分类号:
TP301.5
DOI:
10.3969/j.issn.1001-0505.2012.03.006
摘要:
提出了一种在二维离散三角变换(DTT)域进行线性卷积的算法.首先推导出N1×N2的二维离散余弦变换Ⅱ型(DCT-Ⅱ)与2N1×2N2的二维离散傅里叶变换(DFT)之间的关系式,并将二维DFT的卷积乘积表达式转换成在对应的二维DTT域表示; 然后给出了线性滤波器下输出信号的DCT-Ⅱ 与输入信号的DTT之间关系的显式表达式; 最后,分析了该算法的复杂度.结果表明,当滤波器大于5×5时,该算法计算复杂度远低于常见的空间域滤波算法.另外,在已知二维信号平移后的DCT-Ⅱ系数情况下,该算法比DFT域滤波算法具有更高的计算效率.
Abstract:
A novel algorithm for 2-D linear convolution in the discrete trigonometric transform(DTT)domain is proposed. First, the relationship between 2-D type-Ⅱ discrete cosine transform(DCT-Ⅱ)with a block size of N1×N2 and the 2-D discrete Fourier transform( DFT )with a block size of 2N1×2N2 is derived, and the representation of the convolution multiplication properties of 2-D DFT is converted into the corresponding 2-D DTT. Secondly, the explicit expression of the relationship between the DCT-Ⅱ of the output signal and the DTT of the input signal for the linear filter is given. Finally, the computational complexity of the proposed algorithm is analyzed. The results show that the proposed algorithm has lower computational complexity than the common spatial domain based method when the filter size is larger than 5×5. In addition, the algorithm is more efficient than the DFT domain filtering algorithm if the DCT-Ⅱ coefficients of the translated input signal are known.

参考文献/References:

[1] Martucci S A.Symmetric convolution and the discrete sine and cosine transforms [J].IEEE Transactions on Signal Processing,1994,42(5):1038-1051.
[2] Reju V G,Koh S N,Soon I Y.Convolution using discrete sine and cosine transforms [J].IEEE Signal Processing Letters,2007,14(7):445-448.
[3] Suresh K,Sreenivas T V.Block convolution using discrete trigonometric transforms and discrete Fourier transform [J].IEEE Signal Processing Letters,2008,15:469-472.
[4] Kresch R,Merhav N.Fast DCT domain filtering using the DCT and the DST [J].IEEE Transactions on Image Processing,1999,8(6):821-833.
[5] Merhav N,Kresch R.Approximate convolution using DCT coefficient multipliers [J].IEEE Transactions on Circuits and Systems for Video Technology,1998,8(4):378-385.
[6] Yim C H.An efficient method for DCT-domain separable symmetric 2-D linear filtering [J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(4):517-521.
[7] Strang G.The discrete cosine transform [J].SIAM Review,1999,41(3):135-147.
[8] Rao K R,Yip P.Discrete cosine transforms:algorithms,advantages,applications [M].San Diego,CA,USA:Academic Press,1990.
[9] 冈萨雷斯,伍兹.数字图像处理 [M].阮秋琦,等译.2版.北京:电子工业出版社,2003.
[10] Bi G A,Chen Y Q.Split-radix algorithm for 2D DFT [J].Electronics Letters,1997,33(1):203-205.
[11] Zeng Y H,Bi G A,Leyman A R.New polynomial transform algorithm for multidimensional DCT [J].IEEE Transactions on Signal Processing,2000,48(10):2814-2821.
[12] Moshe Y,Hel-Or H.A fast block motion estimation algorithm using gray code kernels [C] //Proc 6th IEEE Int Symp Signal Processing and Information Technology.Vancouver,BC,Canada,2006:185-190.

备注/Memo

备注/Memo:
作者简介: 王小庆(1987—),男,硕士生; 舒华忠(联系人),男,博士,教授,博士生导师, shu.list@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2011CB707904)、国家自然科学基金资助项目(61073138,60873048)、教育部博士点基金资助项目(20110092110023).
引文格式: 王小庆,伍家松,舒华忠.一种DTT域的二维线性卷积算法[J].东南大学学报:自然科学版,2012,42(3):424-427. [doi:10.3969/j.issn.1001-0505.2012.03.006]
更新日期/Last Update: 2012-05-20