[1]钱华,郑晓红,张学军.呼吸道传染病空气传播的感染概率的预测模型[J].东南大学学报(自然科学版),2012,42(3):468-472.[doi:10.3969/j.issn.1001-0505.2012.03.014]
 Qian Hua,Zheng Xiaohong,Zhang Xuejun.Prediction of risk of airborne transmitted diseases[J].Journal of Southeast University (Natural Science Edition),2012,42(3):468-472.[doi:10.3969/j.issn.1001-0505.2012.03.014]
点击复制

呼吸道传染病空气传播的感染概率的预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第3期
页码:
468-472
栏目:
能源与动力工程
出版日期:
2012-05-20

文章信息/Info

Title:
Prediction of risk of airborne transmitted diseases
作者:
钱华1 郑晓红1 张学军2
1 东南大学能源与环境学院,南京 210096; 2 浙江大学制冷与低温研究所,杭州 310027
Author(s):
Qian Hua1 Zheng Xiaohong1 Zhang Xuejun2
1 School of Energy and Environment, Southeast University, Nanjing 210096,China
2 Institute of Refrigeration and Cryogenics Engineering, Zhejiang University, Hangzhou 310027, China
关键词:
空气传染病 感染概率 Wells-Riley模型
Keywords:
airborne transmitted diseases risk Wells-Riley model
分类号:
TU834
DOI:
10.3969/j.issn.1001-0505.2012.03.014
摘要:
为了加强对空气传染病风险的理解和预测,综述了呼吸道传染病的空气传染特点、传染途径以及预测空气传染病感染风险的模型.基于病人呼出飞沫蒸发后剩余飞沫核(通常小于5μm)在空间均匀分布的假设,介绍了预测呼吸道传染病空气传播风险模型,其中重点介绍Wells-Riley方程的推导、验证及发展,并汇总了已有报道中呼吸道传染病的病毒量(quanta产生率).根据Wells-Riley方程研究了通风和通风量、病人呼出病毒量等对感染概率的影响.结果表明,通风可以显著降低感染概率,但对于某些极端的超级传播事件,还需要其他保护措施.
Abstract:
In order to improve the understanding of the risk of airborne infection and its predicting method, the vehicle of airborne transmitted diseases and risk prediction model of airborne transmitted diseases in an enclosed space are reviewed. Droplet nuclei, the residues of droplets, are considered as the vehicle of airborne transmitted diseases, because they can suspend in air for long time due to small size(less than 5μm). Based on the fact, the Wells-Riley model were derived and verified. The risk estimation models, especially the Wells-Riley model and its modifications, are introduced. Furthermore, the influence parameters such as ventilation rate and quanta generation on the risk are discussed. For the most cases, ventilation can reduce the risk obviously; however, it is not sufficient to deal with some extremely super spreading events. In such cases, other methods such as PPE(personal protective equipments)are needed.

参考文献/References:

[1] Gonzalez J C.Bio-terrorism,"dirty bombs," hospitals,and security issues[J].J Healthc Prot Manage,2004,20(2):55-59.
[2] Gruber P C,Gomersall C D,Joynt G M.Avian influenza(H5N1):implications for intensive care[J].Intensive Care Medicine,2006,32(6):823-829.
[3] World Health Organization.WHO report 2006 global tuberculosis control:surveillance,planning,financing [R].Geneva:WHO,1970.
[4] Li Y,Leung G M,Tang J W,et al.Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review[J].Indoor Air,2007,17(1):2-18.
[5] Allenby B,Fink J.Toward inherently secure and resilient societies[J].Science,2005,309(5737):1034-1036.
[6] Snodgrass M E.World epidemics:a cultural chronology of disease from prehistory to the era of SARS[M].London:McFarland & Company,2003.
[7] Ayliffe G A J,English M M P.Hospital infection:from miasmas to MRSA[M].Cambridge,England:Cambridge University Press,2003:274.
[8] Langmuir A D.Airborne infection:how important for public health? Ⅰ.a historical review[J].Am J Public Health Nations Health,1964,54(10):1666-1668.
[9] Wells W F.On airborne infection study Ⅱ.droplets and droplet nuclei[J].American Journal of Hygiene,1934,20(3):619-627.
[10] Ratcliffe H L,Wells W F.Tuberculosis of rabbits induced by droplet nuclei infection:Ⅰ.initial response to infection[J].Journal of Experimental Medicine,1948,87(6):575-584.
[11] Fennelly K P,Martyny J W,Fulton K E,et al.Cough-generated aerosols of mycobacterium tuberculosis:a new method to study infectiousness[J].Am J Respir Crit Care Med,2004,169(5):604-609.
[12] Riley R L,O’Grady F.Airborne infection:transmission and control [M].New York:The Macmillan Company,1961.
[13] Qian H.Ventilation for airborne infection in hospital environment [D].Hong Kong:Department of Mechanical Engineering of University of Hong Kong,2007.
[14] Wells W F.Airborne contagion and air hygiene:an ecological study of droplet infection[M].Cambridge,MA,USA:Harvard University Press,1955.
[15] Riley E C,Murphy G,Riley R L.Airborne spread of measles in a suburban elementary school[J].Am J Epidemio,1978,107(5):421-432.
[16] Beggs C B,Noakes C J,Sleigh P A,et al.The transmission of tuberculosis in confined spaces:an analytical review of alternative epidemiological models[J].International Journal of Tuberculosis and Lung Disease,2003,7(11):1015-1026.
[17] Brickner P W,Vincent R L,First M,et al.The application of ultraviolet germicidal irradiation to control transmission of airborne disease:bioterrorism countermeasure[J].Public Health Rep,2003,118(2):99-114.
[18] Fennelly K P,Nardell E A.The relative efficacy of respirators and room ventilation in preventing occupational tuberculosis [J].Infect Control Hosp Epidemiol,1998,19(10):754-749.
[19] Seppanen O,Fisk W J,Lei Q H.Ventilation and performance in office work[J].Indoor Air,2006,16(1):28-36.
[20] Gammaitoni L,Nucci M C.Using a mathematical model to evaluate the efficacy of TB control measures[J].Emerg Infect Dis,1997,3(3):335-342.
[21] Ko G,Thompson K M,Nardell E A.Estimation of tuberculosis risk on a commercial airliner[J].Risk Anal,2004,24(2):379-388.
[22] Nicas M.Refining a risk model for occupational tuberculosis transmission[J].Am Ind Hyg Assoc J,1996,57(1):16-22.
[23] Nicas M.Regulating the risk of tuberculosis transmission among health care workers [J].Am Ind Hyg Assoc J,2000,61(3):334-339.
[24] Rudnick S N,Milton D K.Risk of indoor airborne infection transmission estimated from carbon dioxide concentration[J].Indoor Air,2003,13(3):237-245.
[25] Seppanen O A,Fisk W J.Summary of human responses to ventilation[J].Indoor Air,2004,14(sup 7):102-118.
[26] Qian H,Li Y,Nielsen P V,et al.Spatial distribution of infection risk of SARS transmission in a hospital ward[J].Building and Environment,2009,44(8):1651-1658.
[27] Qian H,Li Y G,Seto W H,et al.Natural ventilation for reducing airborne infection in hospitals[J].Building and Environment,2010,45(3):559-565.
[28] Wang J,Qian H,Zhang X.Influence of environmental conditions on airborne infection risk in ward[J].Journal of Southeast University:English Edition,2010,26(2):266-269.
[29] Haas C N.Estimation of risk due to low doses of microorganisms:a comparison of alternative methodologies[J].Am J Eidemiol,1983,118(4):573-582.
[30] Armstrong T W,Haas C N.A quantitative microbial risk assessment model for legionnairs’s disease:animal model selection and dose-response modelling[J].Risk Anal,2007,27(6):1581-1596.
[31] Sze-To G N,Chao C Y H.Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases[J].Indoor Air,2010,20(1):2-16.

备注/Memo

备注/Memo:
作者简介: 钱华(1978—),男,博士,副教授,keenwa@gmail.com.
基金项目: “十二五”国家科技支撑计划资助项目(2011BAJ03B10)、国家自然科学基金资助项目(50808038)、 江苏省自然科学基金资助项目(BK2009289).
引文格式: 钱华,郑晓红,张学军.呼吸道传染病空气传播的感染概率的预测模型[J].东南大学学报:自然科学版,2012,42(3):468-472. [doi:10.3969/j.issn.1001-0505.2012.03.014]
更新日期/Last Update: 2012-05-20