[1]邹红艳,达飞鹏,李晓莉.基于面部曲线特征融合的三维人脸识别[J].东南大学学报(自然科学版),2012,42(4):618-622.[doi:10.3969/j.issn.1001-0505.2012.04.008]
 Zou Hongyan,Da Feipeng,Li Xiaoli.3D face recognition using compositional features from facial curves[J].Journal of Southeast University (Natural Science Edition),2012,42(4):618-622.[doi:10.3969/j.issn.1001-0505.2012.04.008]
点击复制

基于面部曲线特征融合的三维人脸识别()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第4期
页码:
618-622
栏目:
计算机科学与工程
出版日期:
2012-07-20

文章信息/Info

Title:
3D face recognition using compositional features from facial curves
作者:
邹红艳12 达飞鹏1 李晓莉1
1 东南大学自动化学院,南京 210096; 2 南京林业大学机械电子工程学院, 南京 210037
Author(s):
Zou Hongyan12 Da Feipeng1 Li Xiaoli1
1 School of Automation, Southeast University, Nanjing 210096,China
2 School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037,China
关键词:
三维人脸识别 等测地轮廓线 特征融合 主成分分析
Keywords:
3D face recognition iso-geodesic curves feature fusion principal component analysis
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2012.04.008
摘要:
针对三维人脸识别,提出了一种基于面部等测地轮廓线并结合局部特征和整体特征的人脸识别方法.首先,在人脸中提取到鼻尖点等测地距离的点组成等测地轮廓线来表征人脸面部曲面; 然后,根据重采样后轮廓线上点的邻域信息提取局部特征,根据轮廓线的整体形状信息提取人脸整体特征; 最后,分别利用比较局部特征和整体特征,将比较结果在决策级融合,给出最终识别结果.所提算法在FRGC(face recognition grand challenge)v2.0数据库上进行测试,测试结果表明,特征融合后的识别性能优于单一特征的识别率,且具有较好的表情鲁棒性.
Abstract:
A 3D face recognition method combining local and global geometric features which are extracted from the iso-geodesic curves is proposed. First, a set of facial curves with different geodesic distances from the nose tip are extracted to represent a facial surface. Then, for each point in the re-sampled facial curves, local feature which is invariant to pose is calculated from its local neighborhood and the local feature represents the geometric information of the local neighborhood. Next, the shape information of the facial curves is computed which constitute the global feature. Finally, local feature and global feature are compared respectively, and the final result is the weighted sum of them. The method is tested on the FRGC(face recognition grand challenge)v2.0 data set,and the experimental results show that recognition performance using compositional features is superior to that using single feature. Furthermore, it is also robust to expression.

参考文献/References:

[1] 李晓莉,达飞鹏.基于排除算法的快速三维人脸识别方法[J].自动化学报,2010,36(1):153-158.
  Li Xiaoli,Da Feipeng.A rapid method for 3D face recognition based on rejection algorithm[J].Acta Automatica Sinica,2010,36(1):153-158.(in Chinese)
[2] Bowyer K W,Chang K,Flynn P J.A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition[J].Computer Vision and Image Understanding,2006,101(1):1-15.
[3] Srivastava A,Liu Xiuwen,Hesher C.Face recognition using optimal linear components of range images [J].Image and Vision Computing,2006,24(3):291-299.
[4] Llonch R S,Kokiopoulou E,Tosic I,et al.3D face recognition with sparse spherical representations [J].Pattern Recognition,2010,43(3):824-834.
[5] ter Haar F B,Veltkamp R C.A 3D face matching framework for facial curves[J].Graphical Models,2009,71(2):77-91.
[6] Berretti S,del Bimbo A,Pala P.3D face recognition using isogeodesic stripes [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2162-2177.
[7] Dorai C,Jain A K.COSMOS-A representation scheme for 3D free-form objects [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(10):1115-1130.
[8] Zhang L Y,Razdan A,Farin G,et al.3D face authentication and recognition based on bilateral symmetry analysis [J].Visual Computer,2006,22(1):43-55.
[9] Bronstein A M,Bronstein M M,Kimmel R.Three-dimensional face recognition [J].International Journal of Computer Vision,2005,64(1):5-30.
[10] Dijkstra E W.A note on two problems in connection with graphs [J].Numerische Mathematic,1959,1(3):269-271.
[11] Phillips P J,Flynn P J,Scruggs T,et al.Overview of the face recognition grand challenge[C] //Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA,2005:947-954.

相似文献/References:

[1]邓星,达飞鹏,杨乔生.基于自适应人脸切割的三维人脸识别算法[J].东南大学学报(自然科学版),2016,46(2):260.[doi:10.3969/j.issn.1001-0505.2016.02.006]
 Deng Xing,Da Feipeng,Yang Qiaosheng.3D face recognition algorithm based on adaptive face cutting[J].Journal of Southeast University (Natural Science Edition),2016,46(4):260.[doi:10.3969/j.issn.1001-0505.2016.02.006]
[2]吕士文,达飞鹏,邓星.基于区域改进LBP的三维人脸识别[J].东南大学学报(自然科学版),2015,45(4):678.[doi:10.3969/j.issn.1001-0505.2015.04.012]
 Lü Shiwen,Da Feipeng,Deng Xing.3D face recognition method based on regional enhanced local binary pattern[J].Journal of Southeast University (Natural Science Edition),2015,45(4):678.[doi:10.3969/j.issn.1001-0505.2015.04.012]

备注/Memo

备注/Memo:
作者简介: 邹红艳(1980—),女,博士生; 达飞鹏(联系人),男,博士,教授,博士生导师,dafp@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51175081, 61107001)、江苏省自然科学基金资助项目(BK2010058).
引文格式: 邹红艳,达飞鹏,李晓莉.基于面部曲线特征融合的三维人脸识别[J].东南大学学报:自然科学版,2012,42(4):618-622. [doi:10.3969/j.issn.1001-0505.2012.04.008]
更新日期/Last Update: 2012-07-20