[1]钱振东,刘龑.整桥-温度-重载耦合作用下钢桥面黏结层力学分析[J].东南大学学报(自然科学版),2012,42(4):729-733.[doi:10.3969/j.issn.1001-0505.2012.04.029]
 Qian Zhendong,Liu Yan.Mechanical analysis of waterproof bonding layer on steel bridge deck under bridge-temperature-load coupling effect[J].Journal of Southeast University (Natural Science Edition),2012,42(4):729-733.[doi:10.3969/j.issn.1001-0505.2012.04.029]
点击复制

整桥-温度-重载耦合作用下钢桥面黏结层力学分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第4期
页码:
729-733
栏目:
交通运输工程
出版日期:
2012-07-20

文章信息/Info

Title:
Mechanical analysis of waterproof bonding layer on steel bridge deck under bridge-temperature-load coupling effect
作者:
钱振东 刘龑
东南大学智能运输系统研究中心,南京 210096
Author(s):
Qian Zhendong Liu Yan
Intelligent Transport System Research Center, Southeast University, Nanjing 210096, China
关键词:
钢桥面铺装 防水黏结层 有限单元法 复合材料层合板单元 整桥-温度-重载耦合作用
Keywords:
steel bridge deck pavement waterproof bonding layer finite element method composite layer element bridge-temperature-load coupling effect
分类号:
U443.33
DOI:
10.3969/j.issn.1001-0505.2012.04.029
摘要:
建立了整桥鱼脊骨模型和基于复合材料层合板单元的铺装层体系计算模型.首先分析了整桥应力场及局部梁段的温度场对防水黏结层的作用效应以及最不利工况,然后得到黏结层在重载、整桥应力场及日照温度场耦合作用下的最不利层间剪应力.计算结果表明:整桥应力场作用时,黏结层在受扭梁段受层间横向剪应力为主,而在受弯及受拉梁段受层间纵向剪应力为主; 当日照温度场作用时,受层间横向剪应力较大; 重载作用下,黏结层层间横向剪应力明显大于纵向剪应力,且与荷载集度呈线性关系.在整桥-温度-重载多场耦合作用下,分析得到黏结层的最不利受力状态,并基于贡献率的概念,分析了整桥应力场、日照温度场及车辆荷载各自对黏结层层间剪应力的贡献情况.车辆荷载作用对黏结层层间横向剪应力的贡献率仅为80.1%,对黏结层层间纵向剪应力贡献率为89.3%.
Abstract:
The whole bridge model and the pavement calculation system based on the composite solid element theory are built. Firstly, the forces and deformations of main beam in the whole bridge model and the temperature fields of local steel box girder are analyzed. Then, the mechanical responses of the waterproof bonding layer under heavy loads, whole bridge stress fields and sunshine temperature fields are respectively calculated. The results show that under the effect of whole bridge stress fields, the waterproof bonding layer mainly recieves transverse maximum interlaminar shear stress in the local steel box girder subjected to torsion and longitudinal interlaminar shear stress in the box girder subjected to moment and axis forces. Besides, the transverse maximum interlaminar shear stress of the waterproof bonding layer is larger than the longitudinal maximum interlaminar shear stress under the heavy loads and temperature fields and is linear with the load quantity. Based on the concept of contribution rate, the contribution of whole bridge stress field, sunshine temperature field and vehicle load to interlaminar shear stress are analyzed. The vehicle load’s contribution to the maximum transverse interlaminar shear stress is only 80.1% while its contribution to the longitudinal maximum interlaminar shear stress is 89.3%.

参考文献/References:

[1] 李智,钱振东.典型钢桥面铺装结构的病害分类分析 [J].交通运输工程与信息学报,2006,4(2):110-115.
  Li Zhi,Qian Zhendong.Disease analysis and classification of the representative pavements on steel deck[J].Journal of Transportation Engineering and Information,2006,4(2):110-115.(in Chinese)
[2] Gunther G H,Bild S,Sedlacek G.Durability of asphaltic pavements on orthotropic decks of steel bridges[J].Journal of Constructional Steel Research,1987,7(2):85-106.
[3] 杨秀飞,盛赛华,陈仕周.虎门大桥钢桥面铺装热稳性病害的原因分析与处治[J].公路,2001(1):59-63.
  Yang Xiufei,Sheng Saihua,Chen Shizhou.Analysis of causes of thermostablity distresses emerging in steel deck pavement of Humen Large Bridge and treatment for them[J].Highway,2001(1):59-63.(in Chinese)
[4] Liu Yun,Qian Zhendong.Dynamic analysis of pavement on long span steel bridge decks [J].Journal of Southeast University:English Edition,2008,24(2):212-215.
[5] 樊叶华,黄卫,王敬民.江阴大桥钢桥面柔性防水粘结层特性分析[J].公路交通科技,2007,24(6):33-36.
  Fan Yehua,Huang Wei,Wang Jingmin.Research on interface cohesiveness of the waterproofing system for Jiangyin Bridge[J].Journal of Highway and Transportation Research and Development,2007,24(6):33-36.(in Chinese)
[6] 赵锋军,李宇峙,易伟建.桥面沥青铺装层间应力分析简化模型[J].土木工程学报,2007,40(6):100-104.
  Zhao Fengjun,Li Yuzhi,Yi Weijian.A simplified model for interlaminar stress analysis of bridge asphalt pavement[J].China Civil Engineering Journal,2007,40(6):100-104.(in Chinese)
[7] Qian Zhendong,Liu Yan,Zheng Bin.Research on mechanical behavior of long-span cable-stayed bridge steel deck pavement[C] //The 91th Annual Meeting of the Transportation Research Board.Washington,DC,USA,2011:12-2318.
[8] 泰州大桥跨江大桥项目组.泰州桥施工图设计总体计算[R].泰州:江苏省公路长江大桥指挥部,2008.
[9] Jones R M.Mechanics of composite materials[M].London:Taylor & Francis,1999.
[10] 苏庆田,吴冲,董冰,等.斜拉桥扁平钢箱梁的有限混合单元法分析[J].同济大学学报:自然科学版,2005,33(6):742-746.
  Su Qingtian,Wu Chong,Dong Bing,et al.Analysis of flat steel-box-girder of cable-stayed bridge by finite mixed element method[J].Journal of Tongji University:Natural Science,2005,33(6):742-746.(in Chinese)
[11] Li Hui,Harvey John.Numerical simulation and sensitivity analysis of asphalt pavement temperature and near-surface air temperature using integrated local modeling[C] //The 90th Annual Meeting of the Transportation Research Board.Washington,DC,USA,2010:11-3125.
[12] Hermansson A.Mathematical model for paved surface summer and winter temperature:comparison of calculated and measured temperatures[J].Cold Regions Science and Technology,2004,40(1/2):1-17.
[13] Barber E S.Calculation of maximum pavement temperatures from weather reports[J].Highway Research Board Bulletin,1957(168):1-8.
[14] 梁柱,张革军,李娜,等.钢箱梁结构温度测试与分析[J].中外公路,2009,29(6):126-128.
  Liang Zhu,Zhang Gejun,Li Na,et al.Temperature testing and analysis of steel box girder structure[J].Journal of China & Foreign Highway,2009,29(6):126-128.(in Chinese)

备注/Memo

备注/Memo:
作者简介: 钱振东(1969— ),女,博士,教授,博士生导师,qianzd@seu.edu.cn.
基金项目: “十一五”国家科技支撑计划资助项目(2009BAG15B03)、新世纪优秀人才计划资助项目(NCET-08-0118).
引文格式: 钱振东,刘龑.整桥-温度-重载耦合作用下钢桥面黏结层力学分析[J].东南大学学报:自然科学版,2012,42(4):729-733. [doi:10.3969/j.issn.1001-0505.2012.04.029]
更新日期/Last Update: 2012-07-20