[1]李华,孙伟,左晓宝.基于Mapping图像分析的硫酸钠侵蚀水泥基材料中硫元素分布规律[J].东南大学学报(自然科学版),2012,42(4):766-772.[doi:10.3969/j.issn.1001-0505.2012.04.036]
 Li Hua,Sun Wei,Zuo Xiaobao.Study on sulfur distribution in cement-based materials subjected to external sulfate attack based on Mapping image analysis[J].Journal of Southeast University (Natural Science Edition),2012,42(4):766-772.[doi:10.3969/j.issn.1001-0505.2012.04.036]
点击复制

基于Mapping图像分析的硫酸钠侵蚀水泥基材料中硫元素分布规律()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第4期
页码:
766-772
栏目:
材料科学与工程
出版日期:
2012-07-20

文章信息/Info

Title:
Study on sulfur distribution in cement-based materials subjected to external sulfate attack based on Mapping image analysis
作者:
李华1 孙伟1 左晓宝12
1 东南大学材料科学与工程学院, 南京 211189; 2 南京理工大学土木工程系, 南京 210094
Author(s):
Li Hua1 Sun Wei1 Zuo Xiaobao12
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Department of Civil Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
硫酸盐侵蚀 水泥基材料 硫元素浓度分布 面扫描 定量 图像分析
Keywords:
sulfate attack cement-based materials sulfur distribution mapping quantitative image analysis
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2012.04.036
摘要:
利用SEM-BSE成像模式和EDS-Mapping模式测试了质量分数为2.5%和5.0%Na2SO4溶液侵蚀1年后的水泥净浆、砂浆试样的微观形貌和元素分布. 结合图像分析方法,定量描述与分析了试样中硫元素浓度分布规律及硫酸根离子的侵蚀深度.结果表明:不同浓度Na2SO4溶液侵蚀下的净浆、砂浆试样中硫元素浓度分布趋势基本一致,表层浆体硫元素浓度较低,近表层区出现高硫含量带,随后硫元素浓度随深度增加而下降,下降幅度先剧烈后平缓,最终硫元素浓度趋于稳定.硫元素各分布段分别对应于石膏集中生成区、石膏与钙矾石混合生成区、钙矾石集中生成区以及未腐蚀区.高浓度Na2SO4溶液侵蚀后的净浆试样的高硫含量带宽度为550μm,硫元素浓度峰值为6.87%,明显大于低浓度Na2SO4溶液侵蚀后的试样(分别为300μm和1.93%); 低浓度Na2SO4溶液侵蚀下,砂浆试样高硫含量带宽度大于同水灰比净浆试样,硫元素浓度峰值略小于净浆试样.
Abstract:
Backscattered electron image and mapping mode of EDS were adopted to test microstructure and element distributions in cement pastes and mortars eroded by 2.5% and 5.0% Na2SO4 solutions for one year. Combined with subsequent image processing, the distribution rules of sulfur were quantitatively described and analyzed. The results show that the sulfur distribution trends in specimens are basically consistent. The sulfur content in the surface paste is low, “high sulfur content” band appears in the near-surface zone, subsequently, with the increase of depth, sulfur content firstly decreases significantly, then decreases gradually, finally tends to a constant. These sulfur distribution segments correspond to the gypsum area, gypsum-ettringite coexistence area, ettringite area and not eroded area, respectively. Moreover, the width and peak concentration of “high sulfur content” band of cement pastes immersed in 5.0% Na2SO4 solution are 550μm and 6.87%, greater than those in 2.5% Na2SO4 solution(300μm and 1.93%, respectively), and the width of “high sulfur content” band of cement mortar immersed in 2.5% Na2SO4 solution is greater than that of cement paste.

参考文献/References:

[1] Gospodinov P N.Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites [J].Cement and Concrete Research,2005,35(3):520-526.
[2] 左晓宝,孙伟.硫酸盐侵蚀下的混凝土损伤破坏全过程 [J].硅酸盐学报,2009,37(7):1063-1067.
  Zuo Xiaobao,Sun Wei.Full process analysis of damage and failure of concrete subjected to external sulfate attack [J].Journal of the Chinese Ceramic Society,2009,37(7):1063-1067.(in Chinese)
[3] Maltais Y,Samson E,Marchand J.Predicting the durability of Portland cement systems in aggressive environments—laboratory validation[J].Cement and Concrete Research,2004,34(9):1579-1589.
[4] 赵顺波,陈记豪,高润东,等.硫酸盐侵蚀混凝土内部硫酸根离子浓度测试方法 [J].港工技术,2008(3):31-33.
  Zhao Shunbo,Chen Jihao,Gao Rundong,et al.Measurement of sulfate-ion content in concrete attacked by sodium sulfate [J].Port Engineering Technology,2008(3):31-33.(in Chinese)
[5] Sedgewick J.Photoshop科学图像处理——方法、测量与输出 [M].黄晓磊,等译.北京:清华大学出版社,2009:1-9.
[6] 李华,孙伟,左晓宝.硫酸盐侵蚀下硬化水泥浆体中硫元素分布规律的微观测试研究[J].混凝土,2012(2):4-7.
  Li Hua,Sun Wei,Zuo Xiaobao.Microscopic testing of sulfur distribution in hardened cement paste subjected to external sulfate attack [J]. Concrete,2012(2):4-7.(in Chinese)
[7] Brown P W,Doerr A.Chemical changes in concrete due to ingress of aggressive species [J].Cement and Concrete Research,2000,30(3):411-418.
[8] Naik N N,Jupe A C,Stock S R,et al.Sulfate attack monitored by microCT and EDXRD:influence of cement type,water-to-cement ratio,and aggregate [J].Cement and Concrete Research,2006,36(1):144-159.
[9] Irassar E F,Bonavetti V L,Gonzalez M.Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature [J].Cement and Concrete Research,2003,33(1):31-41.
[10] Shah S P.High performance concrete:past,present and future[M] //High Performance Concrete-WorkAbility,Strength and Durability.Hong Kong,China:Hong Kong University of Science and Technology,2000:3-29.
[11] Delagrave A,Bigas J P,Olivier J P,et al.Influence of the interfacial zone on the chloride diffusivity of mortars [J].Advanced Cement Based Materials,1997,5(3/4):86-92.
[12] Zuo Xiaobao.Modeling ion diffusion-reaction behavior in concrete associated with durability deterioration subjected to couplings of environmental and mechanical loadings [R].Nanjing:School of Materials Science and Engineering,Southeast University,2011.
[13] Shane J D,Mason T O,Jenninga H M,et al.Effect of the interfacial transition zone on the conductivity of Portland cement mortars [J].Journal of the American Ceramic Society,2000,83(5):1137-1144.

相似文献/References:

[1]刘加平,李华,田倩,等.基于薄层毛细渗透技术的水泥和矿物掺合料动态接触角测定[J].东南大学学报(自然科学版),2013,43(5):1074.[doi:10.3969/j.issn.1001-0505.2013.05.029]
 Liu Jiaping,Li Hua,Tian Qian,et al.Determination of dynamic contact angles of cement and mineral admixtures based on thin-layer wicking technique[J].Journal of Southeast University (Natural Science Edition),2013,43(4):1074.[doi:10.3969/j.issn.1001-0505.2013.05.029]
[2]黄谦,王冲,杨长辉,等.电脉冲作用下水泥基材料硫酸盐侵蚀的影响因素[J].东南大学学报(自然科学版),2014,44(5):1041.[doi:10.3969/j.issn.1001-0505.2014.05.029]
 Huang Qian,Wang Chong,Yang Changhui,et al.Influence factors of sulfate attack on cement-based materials subjected to electrical pulse[J].Journal of Southeast University (Natural Science Edition),2014,44(4):1041.[doi:10.3969/j.issn.1001-0505.2014.05.029]
[3]陈怀成,钱春香,任立夫.基于微生物矿化技术的水泥基材料早期裂缝自修复[J].东南大学学报(自然科学版),2016,46(3):606.[doi:10.3969/j.issn.1001-0505.2016.03.025]
 Chen Huaicheng,Qian Chunxiang,Ren Lifu.Self-healing of early age cracks in cement-based materials based on mineralization of microorganism[J].Journal of Southeast University (Natural Science Edition),2016,46(4):606.[doi:10.3969/j.issn.1001-0505.2016.03.025]

备注/Memo

备注/Memo:
作者简介: 李华(1987—),女,硕士生; 孙伟(联系人),女,教授,博士生导师,中国工程院院士,sunwei@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2009CB623203)、国家自然科学基金资助项目(51078186)、江苏省自然科学基金资助项目(BK2010071).
引文格式: 李华,孙伟,左晓宝.基于Mapping图像分析的硫酸钠侵蚀水泥基材料中硫元素分布规律[J].东南大学学报:自然科学版,2012,42(4):766-772. [doi:10.3969/j.issn.1001-0505.2012.04.036]
更新日期/Last Update: 2012-07-20