[1]冯径,徐攀,王锦洲,等.一种多策略要素的数据访问调度算法[J].东南大学学报(自然科学版),2012,42(5):820-824.[doi:10.3969/j.issn.1001-0505.2012.05.005]
 Feng Jing,Xu Pan,Wang Jinzhou,et al.Multi-policy element scheduling algorithm for data access[J].Journal of Southeast University (Natural Science Edition),2012,42(5):820-824.[doi:10.3969/j.issn.1001-0505.2012.05.005]
点击复制

一种多策略要素的数据访问调度算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第5期
页码:
820-824
栏目:
计算机科学与工程
出版日期:
2012-09-20

文章信息/Info

Title:
Multi-policy element scheduling algorithm for data access
作者:
冯径 徐攀 王锦洲 黄伟
解放军理工大学气象学院, 南京 211101
Author(s):
Feng Jing Xu Pan Wang Jinzhou Huang Wei
Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China
关键词:
分布式数据库 任务调度 多策略要素 公平性
Keywords:
distributed database task scheduling multi-strategy element fairness
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2012.05.005
摘要:
考虑到任务的重要性、截止时间和资源分布等因素,设计了一种多策略要素的调度算法(MPES),以解决不完全独立的多源分布式气象水文数据库的访问控制问题.该算法为不同优先级的任务设定不同调度窗口,并对节点的安全级别、内容属性和负荷情况进行匹配判定,选择最佳服务节点,以优化系统公平性和整体效率.MPES算法根据队列优先级和可利用的服务资源,动态计算和调整调度窗口; 优先级越高的队列,调度窗口越大,意味着可被服务的任务越多.在每个队列调度窗口时间内的任务被轮流执行.对于同一队列中的任务,根据最小松弛度优先调度策略,决定其进入调度窗口的次序,保证接近截止期的任务先执行.仿真试验结果表明,在不同的网络负荷下,MPES算法得到的分布式数据库访问任务的服务效率和公平性较MCT算法和Min-Min算法均有明显提高,尤其是高负荷情况下,总服务时间减少了11.4%~12.3%.
Abstract:
Considering task’s essentiality, deadline and resource distribution, a multi-policy element scheduling(MPES)algorithm is designed in order to solve the access control problem of incomplete independent multi-source distributed meteorological and hydrological database. In this algorithm, different scheduling windows are assigned for the tasks with different priorities, and the secure lever, data attribute and load situation are matched to select the best service node, which can optimize the system’s fairness and efficiency. According to the priority of every queue and available service resources, the size of scheduling windows is dynamically computed and adjusted. The higher the priority is, the bigger the window is, which means more tasks can be got service. The tasks entering the scheduling windows can be executed alternately. For the tasks in the same queue, the MLLF(modified least laxity first)policy is taken to arrange the order of entering the scheduling window, which guarantees the task close to the certain deadline can be served first. The simulation results show that the service efficiency and fairness for the tasks of distributed database access obtained by the MPES algorithm are superior to those obtained by the MCT(minimum completion time)algorithm and the Min-Min algorithm under different network loads. Especially, the total service time decreases 11.4% to 12.3% under high loads.

参考文献/References:

[1] 朱海,王宇平.多目标约束的网格任务安全调度模型及算法研究[J].电子与信息学报,2010,32(4):988-992.
  Zhu Hai,Wang Yuping.Constrained multi-objective grid task security scheduling model and algorithm[J].Journal of Electronics & Information Technology,2010,32(4):988-992.(in Chinese)
[2] Laplante P A.Real-time system design and analysis [M].3rd ed.London:Prentice Hall,2004:147-156.
[3] Henderson J,Lemon O,Georgila K.Hybrid reinforcement/supervised learning of dialogue policies from fixed data sets[J].Computational Linguistics,2008,34(4):487-511.
[4] 杨忠明,秦勇,黄翰,等.复杂网格的演化及其在Internet负荷平衡中的应用研究[J].计算机工程与科学,2011,33(2):37-41.
  Yang Zhongming,Qin Yong,Huang Han,et al.Research on the evolution of complex and their application in Internet balancing[J].Computer Engineering & Science,2011,33(2):37-41.(in Chinese)
[5] Sulistio A,Poduval G,Buyya R,et al.On incorporating differentiated levels of networks service into GridSim[J].Future Generation Computer Systems,2007,23(4):606-615.
[6] Sulistio A,Cibej U,Venugopal S,et al.A toolkit for modelling and simulating data grids:an extension to GridSim[J].Concurrency and Computation:Practice and Experience,2008,20(13):1591-1096.
[7] Qureshi K,Rehman A,Manuel P.Enhanced GridSim architecture with load balancing[J].The Journal of Supercomputing,2011,57(3):265-275.
[8] Fidanova S.Simulated annealing for grid scheduling problem[C] //Proceedings of IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing.Sofia,Bulgaria,2006:41-45.
[9] Chauhan S S,Joshi R C.A weighted mean time Min-Min Max-Min selective scheduling strategy for independent tasks on grid[C] //Proceedings of the 2nd IEEE International Advance Computing Conference.Patiala,India,2010:4-9.
[10] 彭娜,王运送,聂思举,等.我国民族地区城乡收入差异程度的实证分析[J].中央民族大学学报:自然科学版,2011,20(4):74-77.
  Peng Na,Wang Yunsong,Nie Siju,et al.The empirical analysis of urban-rural income gaps in ethnic areas of China[J].Journal of Central University for Nationalities:Natural Sciences Edition,2011,20(4):74-77.(in Chinese)

相似文献/References:

[1]马维纲,马建峰,黑新宏,等.基于时间触发多传感器融合的列车测速定位系统可调度性[J].东南大学学报(自然科学版),2013,43(6):1190.[doi:10.3969/j.issn.1001-0505.2013.06.011]
 Ma Weigang,Ma Jianfeng,Hei Xinhong,et al.Schedulability of train speed and position measurement system based on time-triggered multi-sensor fusion[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1190.[doi:10.3969/j.issn.1001-0505.2013.06.011]
[2]徐立臻,董逸生.分布式数据库辅助设计工具SUNDDBA[J].东南大学学报(自然科学版),1995,25(1):35.[doi:10.3969/j.issn.1001-0505.1995.01.007]
 Xu Lizhen,Dong Yisheng.Computer-Assisted Distributed Database Design Tool──SUNDDBA[J].Journal of Southeast University (Natural Science Edition),1995,25(5):35.[doi:10.3969/j.issn.1001-0505.1995.01.007]
[3]彭艺频,凌明,杨军.性能受限系统的软硬件划分方法[J].东南大学学报(自然科学版),2004,34(6):828.[doi:10.3969/j.issn.1001-0505.2004.06.025]
 Peng Yipin,Lin Ming,Yang Jun.Hardware-software partitioning based on system performance constrained[J].Journal of Southeast University (Natural Science Edition),2004,34(5):828.[doi:10.3969/j.issn.1001-0505.2004.06.025]

备注/Memo

备注/Memo:
作者简介: 冯径(1962—),女,博士,教授, fengjing863@gmail.com.
基金项目: 国家自然科学基金资助项目(61070174)、东南大学计算机网络和信息集成教育部重点试验室开放课题资助项目(K93-9-2010-03).
引文格式: 冯径,徐攀,王锦洲,等.一种多策略要素的数据访问调度算法[J].东南大学学报:自然科学版,2012,42(5):820-824. [doi:10.3969/j.issn.1001-0505.2012.05.005]
更新日期/Last Update: 2012-09-20