[1]贺玉芝,倪巍伟,张勇.基于密度可达的聚类隐私保护模型[J].东南大学学报(自然科学版),2012,42(5):825-831.[doi:10.3969/j.issn.1001-0505.2012.05.006]
 He Yuzhi,Ni Weiwei,Zhang Yong.A privacy-preserving clustering model based on density[J].Journal of Southeast University (Natural Science Edition),2012,42(5):825-831.[doi:10.3969/j.issn.1001-0505.2012.05.006]
点击复制

基于密度可达的聚类隐私保护模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第5期
页码:
825-831
栏目:
计算机科学与工程
出版日期:
2012-09-20

文章信息/Info

Title:
A privacy-preserving clustering model based on density
作者:
贺玉芝 倪巍伟 张勇
东南大学计算机科学与工程学院, 南京 210096
Author(s):
He Yuzhi Ni Weiwei Zhang Yong
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
隐私保护模型 聚类分析 数据干扰 数据平移 密度可达
Keywords:
privacy-preserving model cluster analysis data perturbation data shift density reachable
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2012.05.006
摘要:
针对面向聚类的数据隐私发布问题,基于密度可达邻域的概念,提出一种面向聚类的隐私保护模型PPC(r,ε,h).该模型通过要求隐藏后所有数据记录在ε内密度可达(r相关)的近邻数不小于h,以避免可能出现的近邻攻击.进一步提出密度可达安全邻域概念,对不满足模型要求的邻域,采用平移近邻的数据隐藏方法进行处理,保证发布后数据集满足模型约束.并利用邻域价值和邻域相似性的概念,对平移过程进行优化.理论分析和实验结果表明,基于PPC(r,ε,h)隐私模型设计的数据隐藏方法,能有效维持原数据集中数据点在各聚簇中的分布,且兼顾了发布后数据的聚类可用性和数据安全性.
Abstract:
Considering the problem of data privacy-preserving publication towards clustering, a privacy-preserving clustering model PPC(r,ε,h)is proposed from the view of density reachable neighborhood in which there exist at least h points as required to prevent neighborhood attack. Based on this model, the concept of safe neighborhood based on density is proposed, and when the neighborhood goes against the above rule, PPC(r,ε,h)perturbs points by shifting neighbor points. Besides, the algorithm is optimized by the concept of value and similarity of neighborhood.Theoretical analysis and experimental results verify that the shift method based on PPC(r,ε,h)model can maintain good neighborhood relationship of the primitive dataset to assure the clustering usability meanwhile preserving the data privacy.

参考文献/References:

[1] Sweeney L.k-anonymity:a model for protecting privacy [J].International Journal on Uncertainty,Fuzziness,and Knowledge-Based Systems,2002,10(5):557-570.
[2] Machanavajjhala A,Gehrke J,Kefer D.l-diversity:privacy beyond k-anonymity [C] //Proceedings of the 22nd International Conference on Data Engineering.Atlanta,GA,USA,2006:24-35.
[3] Zhang Q,Koudas N,Srivastava D,et al.Aggregate query answering on anonymized tables[C] //Proceedings of International Conference on Data Engineering.Istanbul,Turkey,2007:116-125.
[4] Li J X,Tao Y F,Xiao X K.Preservation of proximity privacy in publishing numerical sensitive data[C] //Special Interest Group on Management of Data.Vancouver,BC,Canada,2008:473-486.
[5] Xu Y,Fung B C M,Wang K,et al.Publishing sensitive transactions for itemset utility[C] //Proc of IEEE International Conference on Data Mining.Pisa,Italy,2008:1109-1114.
[6] Oliveira S R M,Zaïane O R.Privacy preserving clustering by data transformation[C] //Proc of the 18th Brazilian Symposium on Databases.Manaus,Brazil,2003:304-318.
[7] Oliveira S R M,Zaïane O R.Achieving privacy preservation when sharing data for clustering [C] //Proc of the International Workshop on Secure Data Management in a Connected World.Toronto,Canada,2004:67-82.
[8] Oliveira S R M,Zaïane O R.Privacy preserving clustering by object similarity based representation and dimensionality reduction transformation [EB/OL].(2004)[2011-03-05].http://www.site.uottawa.caP~zhizhanPppdmworkshop2004Ppaper3.pdf.
[9] Fung B C,Wang K,Wang L,et al.A framework for privacy preserving cluster analysis[C] //Proc of IEEE Int Conf on Intelligence and Security Informatics.Taipei,China,2008:46-51.
[10] 倪巍伟,徐立臻,崇志宏,等.基于邻域属性熵的隐私保护数据干扰方法[J].计算机研究与发展,2009,46(3):498-504.
  Ni Weiwei,Xu Lizhen,Chong Zhihong,et al.A privacy preserving data perturbation algorithm based on neighborhood entropy [J].Journal of Computer Research and Development,2009,46(3):498-504.(in Chinese)
[11] Parameswaran R,Blough D M.Privacy preserving data obfuscation for inherently clustered data[J].International Journal of Information and Computer Security,2008,29(1):4-26.
[12] Li X B,Sumit S.Data clustering and micro-perturbation for privacy-preserving data sharing and analysis [C] //Proc of International Conference on Information Systems.Saint Louis,MO,USA,2010:58-72.
[13] Fung B C M,Wang K,Wang L,et al.Privacy-preserving data publishing for cluster analysis [J].Data & Knowledge Engineering,2009,68(6):552-575.

相似文献/References:

[1]吴福保,李奇,宋文忠.模糊聚类分析的传递方法[J].东南大学学报(自然科学版),1999,29(2):105.[doi:10.3969/j.issn.1001-0505.1999.02.020]
 Wu Fubao,Li Qi,Song Wenzong.Transfer Algorithm to Fuzzy Clustering Analysis[J].Journal of Southeast University (Natural Science Edition),1999,29(5):105.[doi:10.3969/j.issn.1001-0505.1999.02.020]
[2]黄仁,时修荣,沙勇,等.磨削烧伤在线辨识方法的研究[J].东南大学学报(自然科学版),1988,18(2):13.[doi:10.3969/j.issn.1001-0505.1988.02.002]
 Huang Ren Shi Xiurong Sha Yong Sun Xiaojun Su Guisheng (Department of Mechanical Engineering).Research on Approach of On-line Identification of the Grinding Burn[J].Journal of Southeast University (Natural Science Edition),1988,18(5):13.[doi:10.3969/j.issn.1001-0505.1988.02.002]
[3]周童,马建民,顾万君,等.哺乳动物MHC密码子使用概率的聚类分析[J].东南大学学报(自然科学版),2001,31(2):1.[doi:10.3969/j.issn.1001-0505.2001.02.001]
 Zhou Tong,Ma Jianmin,Gu Wanjun,et al.Cluster Analysis of Codon Usage in Mammalian MHC Class Ⅰ and Ⅱ Genes[J].Journal of Southeast University (Natural Science Edition),2001,31(5):1.[doi:10.3969/j.issn.1001-0505.2001.02.001]
[4]李玉民,李旭宏,毛海军,等.主成分聚类分析在省域物流规划中的应用[J].东南大学学报(自然科学版),2004,34(4):549.[doi:10.3969/j.issn.1001-0505.2004.04.028]
 Li Yumin,Li Xuhong,Mao Haijun,et al.Application of principal component analysis and cluster analysis to provincial logistics planning[J].Journal of Southeast University (Natural Science Edition),2004,34(5):549.[doi:10.3969/j.issn.1001-0505.2004.04.028]
[5]谢建明,孙啸,谢雪英,等.基因表达模式分析及软件系统[J].东南大学学报(自然科学版),2003,33(2):201.[doi:10.3969/j.issn.1001-0505.2003.02.021]
 Xie Jianming,Sun Xiao,Xie Xueying,et al.Gene expression profile analysis and software system[J].Journal of Southeast University (Natural Science Edition),2003,33(5):201.[doi:10.3969/j.issn.1001-0505.2003.02.021]
[6]张朝晖,黄惟一.机器人触觉图像的聚类处理[J].东南大学学报(自然科学版),1998,28(4):37.[doi:10.3969/j.issn.1001-0505.1998.04.008]
 Zhang Zhaohui,Huang Weiyi.Cluster Analysis of Tactile Patterns in Robots[J].Journal of Southeast University (Natural Science Edition),1998,28(5):37.[doi:10.3969/j.issn.1001-0505.1998.04.008]

备注/Memo

备注/Memo:
作者简介: 贺玉芝(1986—),女,硕士生; 倪巍伟(联系人),男,博士,副教授,wni@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61003057).
引文格式: 贺玉芝,倪巍伟,张勇.基于密度可达的聚类隐私保护模型[J].东南大学学报:自然科学版,2012,42(5):825-831. [doi:10.3969/j.issn.1001-0505.2012.05.006]
更新日期/Last Update: 2012-09-20