[1]缪志伟,叶列平,裘赵云,等.RC框剪结构强震作用下的耗能分布模式与损伤机制[J].东南大学学报(自然科学版),2012,42(5):933-939.[doi:10.3969/j.issn.1001-0505.2012.05.025]
 Miao Zhiwei,Ye Lieping,Qiu Zhaoyun,et al.Distribution mode of hysteretic energy and damage mechanism of RC frame-shear-wall structure under strong earthquakes[J].Journal of Southeast University (Natural Science Edition),2012,42(5):933-939.[doi:10.3969/j.issn.1001-0505.2012.05.025]
点击复制

RC框剪结构强震作用下的耗能分布模式与损伤机制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第5期
页码:
933-939
栏目:
土木工程
出版日期:
2012-09-20

文章信息/Info

Title:
Distribution mode of hysteretic energy and damage mechanism of RC frame-shear-wall structure under strong earthquakes
作者:
缪志伟1 叶列平2 裘赵云1 李爱群1
1 东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2 清华大学土木工程安全与耐久教育部重点实验室, 北京 100084
Author(s):
Miao Zhiwei1 Ye Lieping2 Qiu Zhaoyun1 Li Aiqun1
1 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2 Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education, Tsinghua University, Beijing 100084, China
关键词:
RC框剪结构 损伤机制 耗能分布模式 抗震设计
Keywords:
reinforced concrete(RC)frame-shear-wall structure damage mechanism distribution mode of hysteretic energy seismic design
分类号:
TU375
DOI:
10.3969/j.issn.1001-0505.2012.05.025
摘要:
采用数值分析方法,对具有多个不同参数的RC框剪结构模型进行了多条强震记录作用下的弹塑性时程分析和Pushover分析.通过对比各算例的计算结果,归纳总结了RC框剪结构的典型耗能分布模式和损伤机制,并对影响结构损伤机制的因素进行了讨论.结果表明,RC框剪结构在罕遇地震作用下可能会形成“强墙肢弱连梁”和“强连梁弱墙肢”的典型损伤机制.前者可使结构获得稳定可控的耗能分布模式,后者则会导致结构形成位置不确定的局部耗能集中层.连梁与墙肢相对刚度比是影响结构损伤机制的重要因素,较小的连梁与墙肢相对刚度比可使结构易于形成“强墙肢弱连梁”的损伤机制; 改变框架和剪力墙的相对比例则不会影响结构的损伤机制.
Abstract:
Several numerical models of reinforced concrete(RC)frame-shear-wall structures with different parameters were analyzed by the nonlinear time-history analysis method and the Pushover method under a serial of strong earthquake records. Based on the analysis results, the typical distribution mode of hysteretic energy of RC frame-shear-wall structures and the corresponding structural damage mechanism were summarized and evaluated. And the influential factors of structural damage mechanism were discussed. The results show that two typical structural damage mechanisms may be formed in the RC frame-shear-wall structures under the major earthquake intensity level, i.e., “strong wall limb-weak coupling beam” mechanism and “strong coupling beam-weak wall limb” mechanism. The former leads to steady and controllable distribution mode of hysteretic energy, while the latter results in energy localization at uncertain story. The structural damage mechanism is determined by the relative stiffness of coupling beam and wall limb in the shear wall rather than the relative ratio of frame and shear wall in the whole structure. And the small relative stiffness of coupling beam and wall limb can result in “strong wall limb-weak coupling beam” mechanism in the structure.

参考文献/References:

[1] Akiyama H.Earthquake resistant limit state design for buildings[M].Tokyo:University of Tokyo Press,1985.
[2] Gupta A,Krawinkler H.Behavior of ductile SMRFs at various seismic hazard levels [J].Journal of Structural Engineering,2000,126(1):98-107.
[3] 程光煜.基于能量抗震设计方法及其在钢支撑框架结构中的应用[D].北京:清华大学土木工程系,2007.
[4] Nakashima M,Saburi K,Tsuji B.Energy input and dissipation behaviour of structures with hysteretic dampers[J].Earthquake Engineering & Structural Dynamics,1996,25(5):483-496.
[5] Connor J J,Wada A,Iwata M,et al.Damage-controlled structures.1.Preliminary design methodology for seismically active regions [J].Journal of Structural Engineering,1997,123(4):423-431.
[6] Harada Y,Akiyama H.Seismic design of flexible-stiff mixed frame with energy concentration [J].Engineering Structures,1998,20(12):1039-1044.
[7] Whittaker A S,Uang C M,Bertero V V.Seismic testing of eccentrically braced dual steel systems [J].Earthquake Spectra,1989,5(2):429-449.
[8] Nakashima M,Iwai S,Iwata M,et al.Energy-dissipation behavior of shear panels made of low-yield steel [J].Earthquake Engineering & Structural Dynamics,1994,23(12):1299-1313.
[9] 叶列平.体系能力设计法与基于性态/位移抗震设计[J].建筑结构,2004,34(6):10-14.
  Ye Lieping.Structure system capacity design approach and performance/displacement-based seismic design [J].Building Structure,2004,34(6):10-14.(in Chinese)
[10] 马千里.钢筋混凝土框架结构基于能量抗震设计方法研究[D].北京:清华大学土木工程系,2009.
[11] 中华人民共和国建设部.GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
[12] 叶列平,陆新征,马千里,等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,23(S2):131-140.
  Ye Lieping,Lu Xinzheng,Ma Qianli,et al.Nonlinear analytical models,methods and examples for concrete structures subject to earthquake loading [J].Engineering Mechanics,2006,23(S2):131-140.(in Chinese)
[13] 杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
  Yang Pu,Li Yingmin,Lai Ming.A new method for selecting inputting waves for time-history analysis[J].China Civil Engineering Journal,2000,33(6):33-37.(in Chinese)
[14] 中华人民共和国建设部.JGJ 3—2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.

备注/Memo

备注/Memo:
作者简介: 缪志伟(1981—),男,博士,讲师,zhiweiseu@sina.com.
基金项目: 国家自然科学基金资助项目(51008078)、东南大学基本科研业务费创新基金资助项目.
引文格式: 缪志伟,叶列平,裘赵云,等.RC框剪结构强震作用下的耗能分布模式与损伤机制[J].东南大学学报:自然科学版,2012,42(5):933-939. [doi:10.3969/j.issn.1001-0505.2012.05.025]
更新日期/Last Update: 2012-09-20