[1]孙璐,王登忠,张惠民.基于便携式落锤动力弯沉的路基弯沉预测模型[J].东南大学学报(自然科学版),2012,42(5):970-974.[doi:10.3969/j.issn.1001-0505.2012.05.031]
 Sun Lu,Wang Dengzhong,et al.Predictive models of subgrade deflection using data from portable falling deflectometer[J].Journal of Southeast University (Natural Science Edition),2012,42(5):970-974.[doi:10.3969/j.issn.1001-0505.2012.05.031]
点击复制

基于便携式落锤动力弯沉的路基弯沉预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第5期
页码:
970-974
栏目:
交通运输工程
出版日期:
2012-09-20

文章信息/Info

Title:
Predictive models of subgrade deflection using data from portable falling deflectometer
作者:
孙璐12 王登忠1 张惠民3
1 东南大学交通学院,南京 210096; 2 美国Catholic大学土木工程系,华盛顿特区20064; 3 晋中公路分局,晋中030600
Author(s):
Sun Lu1 2 Wang Dengzhong1 Zhang Huimin3
1 School of Transportation,Southeast University, Nanjing 210096,China
2 Department of Civil Engineering,The Catholic University of America,Washington DC 20064, USA
3 Jinzhong Highway Administration Bureau, Jinzhong 030600, China
关键词:
弯沉 携式落锤弯沉仪 贝克曼梁 神经网络
Keywords:
deflection portable falling weight deflectometer Benkelman beam artificial neural network
分类号:
U416.03
DOI:
10.3969/j.issn.1001-0505.2012.05.031
摘要:
为了提高路基弯沉检测的效率和精度,以便携式落锤弯沉仪PFWD为平台,对路基弯沉盆指标进行了分析研究.并且针对含砾黏土和含碎石黏土2种不同路基结构,基于回归分析技术及人工神经网络智能方法构建了动弯沉与贝克曼梁静态弯沉之间的分析模型,并对2种不同模型的预测结果进行评价分析.实测数据表明,由于考虑了弯沉盆指标,采用回归模型对2种不同路基的贝克曼梁静弯沉预测相对误差均值分别由4.64%和3.99%下降到3.01%和2.35%,回归方程对贝克曼梁静弯沉的预测精度得到了提高; 同时,采用BP神经网络模型预测相对误差均值分别为1.66%和1.80%,优于多元回归模型.研究结果可以为路基贝克曼梁静弯沉的检测提供参考.
Abstract:
In order to improve the efficiency and precision of subgrade deflection detection, this paper analyzes subgrade deflection basin indicators using portable falling weight deflectometer(PFWD)as the platform. For different embankment structures, regression analysis and artificial neural network method are used to establish models relating dynamic deflection to the static deflection. The measured data show that, considering the deflection basin indicators, the average of the relative error of Benkelman beam deflection predicted by regression models are reduced from 4.64% and 3.99% to 3.01% and 2.35% for two different embankment structures respectively. Meanwhile, the average of the relative error predicted by BP(back-propagation)neural network model are 1.66% and 1.80%, which is better than the multiple regression models. The results provide reference for prediction of static deflection.

参考文献/References:

[1] 交通部公路科学研究院.JTG E60—2008 公路路基路面现场测试规程[S].北京:人民交通出版社,2008.
[2] 邓学钧.路基路面工程[M].北京:人民交通出版社,2001.
[3] Lin Deng-Fong,Liau Chi-Chou,Lin Jyh-Dong.Factors affecting portable falling weight deflectometer measurements [J].Journal of Geotechnical and Genenvironmental Engineering,2006,132(6):804-808.
[4] 段丹军.路基回弹模量的快速检测[D].长沙:长沙理工大学公路工程学院,2004.
[5] 沈东璐,应荣华.应用PFWD检测新老路基路面回弹模量[J].公路与汽运,2006(5):55-58.
  Shen Donglu,Ying Ronghua.Application of PFWD to test new and old subgrade and pavement resilient modulus [J]. Highways & Automotive Applications,2006(5):55-58.(in Chinese)
[6] Kim J R,Kim W J,Kang H B,et al.Evaluation of in situ modulus of compacted subgrades using portable falling weight deflectometer and plate-bearing load test [J].Journal of Materials in Civil Engineering,2007,19(6):492-499.
[7] 查旭东.PFWD快速检测路基模量研究[J].公路交通科技,2006,26(1):26-30.
  Zha Xudong.Study of rapid test of subgrade modulus with PFWD [J].Journal of Highway and Transportation Research and Development,2009,26(1):26-30.(in Chinese)
[8] 樊英华.利用PFWD快速检测路基承载力技术探讨[J].山西交通科技,2007,185(2):1-3.
  Fan Yinghua.The discussion on using PFWD to detect subgrade capacity quickly[J].Shanxi Science & Technology of Communications,2007(2):1-3.(in Chinese)
[9] 徐平,王复明,陈忠平,等.PFWD在路基强度评价中的应用[J].路基工程,2008(5):52-54.
  Xu Ping,Wang Fuming,Chen Zhongping,et al.Application of PFWD to evaluating subgrade strength [J].Subgrade Engineering,2008(5):52-54.(in Chinese)
[10] Hoffman M S,Thompson M R.Backcalculating nonlinear resilient moduli from deflection data[C] //Proceedings of the 61rd Transportation Research Board Annual Meeting.Washington DC,USA,1982:42-51.
[11] Horak E.The use of surface deflection basin measurements in the mechanistic analysis of flexible pavements[C] //The Sixth International Conference on Oil Structure Design of Asphalt Pavements.East Lansing,USA,1987:990-1001.
[12] Lee Y C,Kim Y R,Ranjithan S R.Dynamic analysis-based approach to determine flexible pavement layer moduli using deflection basin parameters[J].Transportation Research Record:Journal of the Transportation Research Board,1998,1639:36-42.
[13] 杨国良.基于落锤式弯沉仪评价路基路面结构层状况的研究[D].广州:华南理工大学土木与交通学院,2007.
[14] 飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2005.
[15] 高隽.人工神经元网络原理及仿真实例[M].北京:机械工业出版社,2003.
[16] 蔡建琼.于慧芬,朱志洪,等.SPSS统计分析实例精选[M].北京:清华大学出版社,2006.
[17] 勒建明.土密实度瞬态振动测试的分析方法研究[D].杭州:浙江大学建筑工程学院,2004.
[18] 闻新,周露,王丹力,等.Matlab神经网络应用设计[M].北京:科学出版社,2000.
[19] 闫平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.

备注/Memo

备注/Memo:
作者简介: 孙璐(1972—),男,博士,教授,博士生导师,workingworking123@163.com.
基金项目: 教育部“长江学者”特聘教授奖励基金资助项目、美国国家科学基金资助项目(CMMI-0644552)、江苏省“六大人才高峰”资助项目、教育部霍英东基金资助项目(114024)、江苏省自然科学重点资助项目(SBK200910046).
引文格式: 孙璐,王登忠,张惠民.基于便携式落锤动力弯沉的路基弯沉预测模型[J].东南大学学报:自然科学版,2012,42(5):970-974. [doi:10.3969/j.issn.1001-0505.2012.05.031]
更新日期/Last Update: 2012-09-20