[1]朱慧云,陈森发,张丽杰.动态环境下多个时期的客户购物模式变化挖掘[J].东南大学学报(自然科学版),2012,42(5):1012-1015.[doi:10.3969/j.issn.1001-0505.2012.05.038]
 Zhu Huiyun,Chen Senfa,Zhang Lijie.Change mining of customer shopping patterns from multi-period datasets under dynamic environment[J].Journal of Southeast University (Natural Science Edition),2012,42(5):1012-1015.[doi:10.3969/j.issn.1001-0505.2012.05.038]
点击复制

动态环境下多个时期的客户购物模式变化挖掘()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第5期
页码:
1012-1015
栏目:
自动化
出版日期:
2012-09-20

文章信息/Info

Title:
Change mining of customer shopping patterns from multi-period datasets under dynamic environment
作者:
朱慧云1 陈森发1 张丽杰2
1 东南大学经济管理学院,南京 210096; 2 南京信息工程大学经济管理学院,南京 210044
Author(s):
Zhu Huiyun1 Chen Senfa1 Zhang Lijie2
1 School of Economics and Management, Southeast University, Nanjing 210096, China
2 School of Economics and Management, Nanjing University of Information Science and Technology, Nanjing 210044, China
关键词:
数据挖掘 变化分析 变化挖掘 关联规则 零售业
Keywords:
data mining change analysis change mining association rule retailing
分类号:
TP181
DOI:
10.3969/j.issn.1001-0505.2012.05.038
摘要:
针对现有多个时期变化挖掘方法的不足,在已有的稳定和趋势变化类型基础上,提出了突变规则的概念,将支持度(或置信度)序列中存在孤立点的规则定义为突变规则,并使用格拉布斯检验发现突变规则.突变规则表明客户购物行为的突变,可以更全面地反映客户购物模式随时间变化的动态信息,帮助管理者根据变化模式及时采取有效的应对措施,取得竞争优势.为了对变化模式的重要程度进行评估,将规则的支持度(或置信度)均值作为稳定规则兴趣度的客观度量,将Mann-Kendall检验的Kendall斜率作为趋势变化的显著程度度量,并将孤立点的偏离程度作为突变规则兴趣度的度量.实证分析结果表明,所提方法可以有效地识别多个时期数据集的客户购物模式变化.
Abstract:
Aiming at the shortcomings of existing change mining methods from multi-period datasets, the concept of abrupt rules based on two existing types of changes, stable rules and those which exhibit trends, is presented. The rules that outliers exist in support or confidence time series are defined as abrupt rules, and the Grubbs test is used to discover the abrupt rules. The abrupt rules exhibit the abrupt changes of customer shopping behavior, which can reflect the dynamic information of customer shopping patterns with time comprehensively and help managers take effective strategies timely to gain competitive advantage. In order to evaluate the degree of change, the average value of support or confidence of rules is used as the interest measure for stable rules; the Kendall slope of the Mann-Kendall test is used as the degree of change for rules which exhibit trends; and the departure degree of outliers is used as the interest measure for abrupt rules. The results of empirical evaluation show that the proposed method can effectively recognize the change of customer shopping patterns from multi-period datasets.

参考文献/References:

[1] Song H S,Kim J K,Kim S H.Mining the change of customer behavior in an internet shopping mall[J].Expert Systems with Applications,2001,21(3):157-168.
[2] Chen M C,Chiu A L,Chang H H.Mining changes in customer behavior in retail marketing[J].Expert Systems with Applications,2005,28(4):773-781.
[3] Liu D R,Shih M J,Liau C J,et al.Mining the change of event trends for decision support in environmental scanning[J].Expert Systems with Applications,2009,36(2):972-984.
[4] Shih M J,Liu D R,Hsu M L.Discovering competitive intelligence by mining changes in patent trends[J].Expert Systems with Applications,2010,37(4):2882-2890.
[5] 戴群达.探勘多期资料下样式变化之研究[D].中国台南:国立成功大学资讯管理研究所,2007.
[6] 沈斌,姚敏.一种新的动态关联规则及其挖掘算法[J].控制与决策,2009,24(9):1310-1315.
  Shen Bin,Yao Min.A new kind of dynamic association rule and its mining algorithms[J].Control and Decision,2009,24(9):1310-1315.
[7] Liu B,Ma Y M,Lee R.Analyzing the interestingness of association rules from the temporal dimension[C] //Proceedings of 2001 IEEE International Conference on Data Mining.San Jose,CA,USA,2001:377-384.
[8] Böttcher M,Spott M,Nauck D,et al.Mining changing customer segments in dynamic markets[J].Expert Systems with Applications,2009,36(1):155-164.

相似文献/References:

[1]赵传申,孙志挥.半结构化文档数据流的快速频繁模式挖掘[J].东南大学学报(自然科学版),2006,36(3):452.[doi:10.3969/j.issn.1001-0505.2006.03.025]
 Zhao Chuanshen,Sun Zhihui.Fast mining frequent patterns in semi-structured data stream[J].Journal of Southeast University (Natural Science Edition),2006,36(5):452.[doi:10.3969/j.issn.1001-0505.2006.03.025]
[2]陆建江,徐宝文,邹晓峰,等.模糊关联规则的并行挖掘算法[J].东南大学学报(自然科学版),2005,35(2):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
 Lu Jianjiang,Xu Baowen,Zou Xiaofeng,et al.Parallel mining algorithm for fuzzy association rules[J].Journal of Southeast University (Natural Science Edition),2005,35(5):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
[3]丁艺明,金远平.一种基于记录分区的多值关联规则挖掘算法[J].东南大学学报(自然科学版),2000,30(2):6.[doi:10.3969/j.issn.1001-0505.2000.02.002]
 Ding Yiming,Jin Yuanping.A Record Partition Based Algorithm for Mining Quantitative Association Rules[J].Journal of Southeast University (Natural Science Edition),2000,30(5):6.[doi:10.3969/j.issn.1001-0505.2000.02.002]
[4]陆介平,刘月波,倪巍伟,等.基于PrefixSpan的快速交互序列模式挖掘算法[J].东南大学学报(自然科学版),2005,35(5):692.[doi:10.3969/j.issn.1001-0505.2005.05.008]
 Lu Jieping,Liu Yuebo,Ni Weiwei,et al.Fast interactive sequential pattern mining algorithm based on PrefixSpan[J].Journal of Southeast University (Natural Science Edition),2005,35(5):692.[doi:10.3969/j.issn.1001-0505.2005.05.008]
[5]张净,孙志挥.GDLOF:基于网格和稠密单元的快速局部离群点探测算法[J].东南大学学报(自然科学版),2005,35(6):863.[doi:10.3969/j.issn.1001-0505.2005.06.007]
 Zhang Jing,Sun Zhihui.GDLOF: fast local outlier detection algorithm with grid-based and dense cell[J].Journal of Southeast University (Natural Science Edition),2005,35(5):863.[doi:10.3969/j.issn.1001-0505.2005.06.007]
[6]杨明,孙志挥,吉根林.一种基于分布式数据库的全局频繁项目集更新算法[J].东南大学学报(自然科学版),2002,32(6):879.[doi:10.3969/j.issn.1001-0505.2002.06.012]
 Yang Ming,Sun Zhihui,Ji Genlin.Algorithm based on distributed database for updating global frequent itemsets[J].Journal of Southeast University (Natural Science Edition),2002,32(5):879.[doi:10.3969/j.issn.1001-0505.2002.06.012]
[7]陈岭,陈元中,陈根才.基于操作序列挖掘的OLAP查询推荐方法[J].东南大学学报(自然科学版),2011,41(3):498.[doi:10.3969/j.issn.1001-0505.2011.03.013]
 Chen Ling,Chen Yuanzhong,Chen Gencai.Operation sequence mining based OLAP query recommendation method[J].Journal of Southeast University (Natural Science Edition),2011,41(5):498.[doi:10.3969/j.issn.1001-0505.2011.03.013]
[8]胡孔法,唐小丽,达庆利,等.一种高效挖掘高维数据的频繁闭合模式算法[J].东南大学学报(自然科学版),2007,37(4):569.[doi:10.3969/j.issn.1001-0505.2007.04.005]
 Hu Kongfa,Tang Xiaoli,Da Qingli,et al.Efficient algorithm for frequent closed patterns mining from high dimensional data[J].Journal of Southeast University (Natural Science Edition),2007,37(5):569.[doi:10.3969/j.issn.1001-0505.2007.04.005]
[9]龚振志,胡孔法,达庆利,等.DMGSP:一种快速分布式全局序列模式挖掘算法[J].东南大学学报(自然科学版),2007,37(4):574.[doi:10.3969/j.issn.1001-0505.2007.04.006]
 Gong Zhenzhi,Hu Kongfa,Da Qingli,et al.DMGSP: an algorithm of distributed mining global sequential pattern on distributed system[J].Journal of Southeast University (Natural Science Edition),2007,37(5):574.[doi:10.3969/j.issn.1001-0505.2007.04.006]
[10]肖利,金远平,徐宏炳,等.一个新的挖掘广义关联规则算法[J].东南大学学报(自然科学版),1997,27(6):76.[doi:10.3969/j.issn.1001-0505.1997.06.015]
 Xiao Li,Jin Yuanping,Xu Hongbing,et al.A New Algorithm for Mining Generalized Association Rules[J].Journal of Southeast University (Natural Science Edition),1997,27(5):76.[doi:10.3969/j.issn.1001-0505.1997.06.015]

备注/Memo

备注/Memo:
作者简介: 朱慧云(1978—),女,博士生; 陈森发(联系人),男,教授,博士生导师,chensenfa@163.com.
基金项目: 教育部博士点基金资助项目(2006028600)、江苏省高校自然科学研究资助项目( 10KJB170011).
引文格式: 朱慧云,陈森发,张丽杰.动态环境下多个时期的客户购物模式变化挖掘[J].东南大学学报:自然科学版,2012,42(5):1012-1015. [doi:10.3969/j.issn.1001-0505.2012.05.038]
更新日期/Last Update: 2012-09-20