[1]罗武骏,陶文凤,左加阔,等.自适应语音压缩感知方法[J].东南大学学报(自然科学版),2012,42(6):1027-1030.[doi:10.3969/j.issn.1001-0505.2012.06.001]
 La Vu Tuan,Dao Van Phuong,Zuo Jiakuo,et al.Adaptive compressed sensing method for speech[J].Journal of Southeast University (Natural Science Edition),2012,42(6):1027-1030.[doi:10.3969/j.issn.1001-0505.2012.06.001]
点击复制

自适应语音压缩感知方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第6期
页码:
1027-1030
栏目:
信息与通信工程
出版日期:
2012-11-20

文章信息/Info

Title:
Adaptive compressed sensing method for speech
作者:
罗武骏 陶文凤 左加阔 赵力
东南大学水声信号处理教育部重点实验室, 南京 210096
Author(s):
La Vu Tuan Dao Van Phuong Zuo Jiakuo Zhao Li
Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
压缩感知 稀疏性 语音 线性预测
Keywords:
compressed sensing sparsity speech linear prediction
分类号:
TN912
DOI:
10.3969/j.issn.1001-0505.2012.06.001
摘要:
针对固定正交基下语音信号稀疏化程度低、适应性差的问题,提出了一种自适应的语音稀疏化方法,并将其应用到语音压缩感知理论中.该方法首先采用线性预测系数的加权线性组合对语音信号进行线性预测,并以线性预测残差基作为信号基.然后,按照稀疏约束条件训练出稀疏表示的过完备字典,并交替应用1-范数稀疏约束的追踪和奇异值分解算法,达到字典与稀疏系数同步更新.该方法从信号特征入手,学习并提取特征或纹理信息,能较好地实现语音信号的稀疏化,提高语音压缩感知的重构性能.实验结果显示,与其他正交基方法相比,该方法的语音稀疏化程度高.语音质量的主客观评价结果显示,该方法具有良好的重构性能.
Abstract:
To overcome the problem that the method of sparsification for speech signal based on fixed orthogonal base has a low sparsity and is not adaptive, a new adaptive sparsification algorithm is developed for speech signal compression. First, speech signal is predicted by linear predication using weighted linear combination of linear predictive coefficients, and the linear prediction residual are used as the signal bases. Then, the adaptive training dictionary is trained under the sparsity constraint, and the dictionary and sparsity coefficients are updated by alternatively using 1-norm sparsity constraint pursuit and singular value decomposition(SVD)algorithm. By analyzing the feature of speech signals, the new scheme can exactly extract essential feature or texture feature, and can obtain better sparsification performance and reconstruction performance for speech signal. The experimental results show that compared with other orthogonal base algorithms, the sparsity of speech signals with the proposed method is obviously improved. The subjective and objective evaluation results of speech quality also show that the proposed method exhibits a good reconstruction performance in speech signal.

参考文献/References:

[1] Candes E J,Tao T.Near-optimal signal recovery from random projections:universal encoding strategies? [J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
[2] Donoho D L.Compressed sensing [J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[3] 石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.
  Shi Guangming,Liu Danhua,Gao Dahua,et al.Advances in theory and application of compressed sensing [J].Acta Electronica Sinica,2009,37(5):1070-1081.
[4] Davies M E,Daudet L.Sparse audio representations using the MCLT [J].Signal Processing,2006,86(3):457-470.
[5] 梁瑞宇,邹采荣,赵力,等.语音压缩感知及其重构算法[J].东南大学学报:自然科学版,2011,41(1):1-5.
  Liang Ruiyu,Zou Cairong,Zhao Li,et al.Compressed sensing in speech and its reconstruction algorithm[J].Journal of Southeast University:Natural Science Edition,2011,41(1):1-5.
[6] Candes E J,Eldar Y C,Needell D,et al.Compressed sensing with coherent and redundant dictionaries [J].Applied and Computational Harmonic Analysis,2011,31(1):59-73.
[7] Giacobello D,Christensen M G,Murthi M N,et al.Retrieving sparse patterns using a compressed sensing framework:applications to speech coding based on sparse linear prediction [J].IEEE Signal Processing Letters,2010,17(1):103-106.
[8] Aharon M,Elad M A,Bruckstein.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation [J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[9] Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit [J].SIAM Review,2001,43(1):129-159.
[10] Goodwin M M,Vetterli M.Matching pursuit and atomic signal models based on recursive filter banks [J].IEEE Transactions on Signal Processing,1999,47(7):1890-1902.
[11] Giacobello D,Christensen M G,Murthi M N,et al.Sparse linear prediction and its applications to speech processing [J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(5):1644-1657.
[12] Elad M,Bruckstein A M.A generalized uncertainty principle and sparse representation in pairs of bases [J].IEEE Transactions on Information Theory,2002,48(9):2558-2567.
[13] Cristobal E,Flavian C,Guinaliu M.Perceived e-service quality(PeSQ):measurement validation and effects on consumer satisfaction and web site loyalty [J].Managing Service Quality,2007,17(3):317-340.
[14] Emiya V,Vincent E N,Harlander,et al.Subjective and objective quality assessment of audio source separation [J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(5):2046-2057.

相似文献/References:

[1]赵小燕,汤捷,周琳,等.基于相位差复指数变换的传声器多声源定位[J].东南大学学报(自然科学版),2013,43(2):231.[doi:10.3969/j.issn.1001-0505.2013.02.001]
 Zhao Xiaoyan,Tang Jie,Zhou Lin,et al.Multiple sound source localization of microphones based on complex exponential transform of phase differences[J].Journal of Southeast University (Natural Science Edition),2013,43(6):231.[doi:10.3969/j.issn.1001-0505.2013.02.001]
[2]梁瑞宇,邹采荣赵力,奚吉,等.语音压缩感知及其重构算法[J].东南大学学报(自然科学版),2011,41(1):1.[doi:10.3969/j.issn.1001-0505.2011.01.001]
 Liang Ruiyu,Zou Cairong,Zhao Li,et al.Compressed sensing in speech and its reconstruction algorithm[J].Journal of Southeast University (Natural Science Edition),2011,41(6):1.[doi:10.3969/j.issn.1001-0505.2011.01.001]
[3]艾鸽,伍家松,段宇平,等.一种基于压缩感知的无损图像认证算法[J].东南大学学报(自然科学版),2013,43(3):489.[doi:10.3969/j.issn.1001-0505.2013.03.008]
 Ai Ge,Wu Jiasong,Duan Yuping,et al.Lossless image authentication algorithm based on compressive sensing[J].Journal of Southeast University (Natural Science Edition),2013,43(6):489.[doi:10.3969/j.issn.1001-0505.2013.03.008]
[4]吴名,宋铁成,沈连丰,等.一种噪声未知的新型空间频谱分布协作感知算法[J].东南大学学报(自然科学版),2016,46(2):231.[doi:10.3969/j.issn.1001-0505.2016.02.001]
 Wu Ming,Song Tiecheng,Shen Lianfeng,et al.Novel cooperative sensing algorithm for spatial spectrum distribution with unknown noises[J].Journal of Southeast University (Natural Science Edition),2016,46(6):231.[doi:10.3969/j.issn.1001-0505.2016.02.001]

备注/Memo

备注/Memo:
作者简介: 罗武骏(1985—),男,博士生; 赵力(联系人),男,博士,教授,博士生导师,zhaoli@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51075068,61201326,61231002,61273266)、教育部博士点基金资助项目(20110092130004)、江苏省高校自然科学研究基金资助项目(12KJB510021).
引文格式: 罗武骏,陶文凤,左加阔,等.自适应语音压缩感知方法[J].东南大学学报:自然科学版,2012,42(6):1027-1030. [doi:10.3969/j.issn.1001-0505.2012.06.001]
更新日期/Last Update: 2012-11-20