[1]顾兴中,程洁,李俐军,等.血管支架耦合系统血流动力学数值模拟与实验研究[J].东南大学学报(自然科学版),2012,42(6):1089-1093.[doi:10.3969/j.issn.1001-0505.2012.06.013]
 Gu Xingzhong,Cheng Jie,Li Lijun,et al.Numerical simulation and experimental test of hemodynamics in vessel-stent coupling systems[J].Journal of Southeast University (Natural Science Edition),2012,42(6):1089-1093.[doi:10.3969/j.issn.1001-0505.2012.06.013]
点击复制

血管支架耦合系统血流动力学数值模拟与实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第6期
页码:
1089-1093
栏目:
生物医学工程
出版日期:
2012-11-20

文章信息/Info

Title:
Numerical simulation and experimental test of hemodynamics in vessel-stent coupling systems
作者:
顾兴中 程洁 李俐军 倪中华
东南大学江苏省微纳生物医疗器械设计与制造重点实验室,南京 211189; 东南大学苏州研究院,苏州 215123
Author(s):
Gu Xingzhong Cheng Jie Li Lijun Ni Zhonghua
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Suzhou Research Institute, Southeast University,Suzhou 215123, China
关键词:
血管支架 再狭窄 血流动力学 壁面剪应力
Keywords:
stent restenosis hemodynamics wall shear stress
分类号:
R318.01;TB126
DOI:
10.3969/j.issn.1001-0505.2012.06.013
摘要:
针对预防血管支架植入后再狭窄的需求,分别用数值模拟和实验测试的方法研究了血管支架耦合系统的血流动力学因素.采用有限体积法的基于算子分裂的压力隐式算法进行了脉动流状态下的壁面剪应力分析,结果表明:壁面剪应力的最小值总是出现在支架杆临近区域; 任意时刻,壁面某个点的壁面剪应力与入口速度、入口加速度正相关,壁面剪应力值低于0.5 Pa区域面积与入口速度负相关; 在一个心动周期的部分时刻,支架段内出现低于0.5 Pa的壁面剪应力,因此该区域为内膜增生易发区; 支架杆壁厚与低壁面剪应力区域面积正相关; 支架杆宽度与壁面剪应力基本无关.采用电化学方法定量测试了在模拟血管内植入支架前与植入支架后的壁面剪应力平均值.结果表明:实验数据与数值分析结果具有较好的一致性,所提出的实验方法是对血流动力学模拟方法的合理补充和有效验证.
Abstract:
In order to prevent the instent restenosis, the hemodynamics of the vessel-stent coupling systems is studied by combining numerical simulation methods with in vitro experiments. The pressure implicit with splitting of operators(PISO)algorithm of finite volume formulae is used to analyze the pulsatile flow of vessel-stent coupling models. The results show that, the lowest wall shear stress(WSS)always occurs at the area adjacent to each stent strut and links at any instants of the flow cycle. The WSS of certain points on the artery wall correlates positively with the inlet velocity and acceleration, while low WSS area of the whole artery wall has a negative correlation with the inlet velocity. Low WSS values less than 0.5 Pa are found at some instants in stented regions, which may provide a source of endothelial stimulation propitious to restenosis. Stent thickness has a positive correlation with low WSS area, while stent width has little relevance to WSS. In addition, the electrochemical method is used to quantify the time-averaged WSS with and without the implantation of the independent designed stent in model vessel. Well consistency between numerical and experimental results denotes that the proposed experiment can verify the hemodynamic simulation.

参考文献/References:

[1] Koskinas K C,Chatzizisis Y S,Antonios P,et al.Role of endothelial shear stress in stent restenosis and thrombosis:pathophysiologic mechanisms and implications forclinical translation[J].Journal of the American College of Cardiology,2012,59(15):1337-1349.
[2] Babiker M H,Gonzalez L F,Ryan J,et al.Influence of stent configuration on cerebral aneurysm fluid dynamics[J].Journal of Biomechanics,2012,45(3):440-447.
[3] Balossino R,Gervaso F,Migliavacca F,et al.Effects of different stent designs on local hemodynamics in stented arteries [J].Journal of Biomechanics,2008,41(5):1053-1061.
[4] Lawford P V,Ventikos Y,Khir A W,et al.Modelling the interaction of haemodynamics and the artery wall:current status and future prospects[J].Biomedicine & Pharmacotherapy,2008,62(8):530-535.
[5] Berry J L,Santamarina A,Moore J E,et al.Experimental and computational flow evaluation of coronary stents[J].Annals of Biomedical Engineering,2000,28(4):386-398.
[6] Ladisa J F,Olson L E,Guler I,et al.Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models[J].J Appl Physiol,2005,98(3):947-957.
[7] Benard N,Coisne D,Donal E,et al.Experimental study of laminar blood flow through an artery treated by a stent implantation:characterisation of intra-stent wall shear stress[J].Journal of Biomechanics,2003,36(7):991-998.
[8] 温正,石良臣,任毅如.FLUENT 流体计算应用教程[M].北京:清华大学出版社,2009.
[9] 顾兴中,易红,倪中华,等.冠状动脉支架的设计与加工工艺研究[J].东南大学学报:自然科学版,2005,35(6):898-902.
  Gu Xingzhong,Yi Hong,Ni Zhonghua,et al.Design and fabrication of coronary stent[J].Journal of Southeast University:Natural Science Edition,2005,35(6):898-902.(in Chinese)
[10] 程洁,周啸,李俐军,等.冠脉支架的多功能体外力学性能测试装置及实验研究[J].东南大学学报:自然科学版,2010,40(2):341-345.
  Cheng Jie,Zhou Xiao,Li Lijun,et al.In-vitro test apparatus and experimental study of mechanics properties of coronary stents[J].Journal of Southeast University:Natural Science Edition,2010,40(2):341-345.(in Chinese)

相似文献/References:

[1]倪中华,易红,王跃轩,等.预防心血管再狭窄纳米颗粒载药涂层支架的研究[J].东南大学学报(自然科学版),2004,34(6):789.[doi:10.3969/j.issn.1001-0505.2004.06.016]
 Ni Zhonghua,Yi Hong,Wan Yuexuan,et al.Research on drug-loading nanoparticle coating stent for preventing restenosis[J].Journal of Southeast University (Natural Science Edition),2004,34(6):789.[doi:10.3969/j.issn.1001-0505.2004.06.016]

备注/Memo

备注/Memo:
作者简介: 顾兴中(1971—),男,博士,讲师,aresgu@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51275089,51005124)、江苏省科技支撑计划资助项目(BE2009054)、江苏省自然科学基金资助项目(BK2010398)、苏州市自然科学基金资助项目(SYG201103).
引文格式: 顾兴中,程洁,李俐军,等.血管支架耦合系统血流动力学数值模拟与实验研究[J].东南大学学报:自然科学版,2012,42(6):1089-1093. [doi:10.3969/j.issn.1001-0505.2012.06.013]
更新日期/Last Update: 2012-11-20