[1]胡永东,吴国新,徐逸卿.基于小波分析的WiMax网络业务流长相关性[J].东南大学学报(自然科学版),2013,43(1):1-5.[doi:10.3969/j.issn.1001-0505.2013.01.001]
 Hu Yongdong,Wu Guoxin,Xu Yiqing.Wavelet analysis-based long range dependence in WiMax traffic[J].Journal of Southeast University (Natural Science Edition),2013,43(1):1-5.[doi:10.3969/j.issn.1001-0505.2013.01.001]
点击复制

基于小波分析的WiMax网络业务流长相关性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第1期
页码:
1-5
栏目:
计算机科学与工程
出版日期:
2013-01-20

文章信息/Info

Title:
Wavelet analysis-based long range dependence in WiMax traffic
作者:
胡永东123吴国新12徐逸卿123
1 东南大学计算机科学与工程学院, 南京 211189; 2 东南大学计算机网络和信息集成教育部重点实验室, 南京 211189; 3 南京林业大学信息科学技术学院, 南京 210037
Author(s):
Hu Yongdong123 Wu Guoxin12 Xu Yiqing123
1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2 Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 211189, China
3 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
关键词:
WiMax业务流 长相关性 Hurst参数 小波分析
Keywords:
WiMax traffic long range dependence Hurst parameter wavelet analysis
分类号:
TP393
DOI:
10.3969/j.issn.1001-0505.2013.01.001
摘要:
为了精确有效地检测WiMax网络业务流的长相关性,利用自相似随机过程和小波变换都具有尺度不变性的特性,建立了表征长相关性的Hurst参数和小波系数的统计量.研究了业务流长相关性的小波估计法,反复选择小波消失矩和优化尺度参数的范围,减小这些因素对检测结果的影响.利用ON/OFF模型仿真WiMax网络中5种不同类型业务流,然后使用小波估计法对trace文件进行分析.检测分析结果表明:实时业务流的长相关性比较小,非实时业务流的长相关性相对较大;随着网络负载的增大,业务流的长相关性会略有变化,聚合业务流的长相关性的检测值与理论值基本吻合.
Abstract:
In order to detect long-range dependence(LRD)in the WiMax network traffic accurately and efficiently, using the scale invariance property of self-similar stochastic process and the wavelet transform, the statistics of LRD Hurst parameters and wavelet coefficients are established. Then, the wavelet analysis algorithm of LRD in network traffic is studied. Repeated selection of wavelet vanishing moments and the optimization of the range of the scale parameter can reduce the impact on the test results. By the ON/OFF model, five different types of traffic in WiMax networks are simulated. And then the wavelet analysis method is used to analyze the trace file. The test results show that LRD of the real-time traffic is small, but LRD of non-real-time traffic is relatively large. As the network load increases, LRD of network traffic may change slightly. The detection value of LRD of aggregate flow is basically consistent with the theoretical value.

参考文献/References:

[1] Taqqu M S, Teverovsky V, Willinger W. Estimators for long-range dependence: an empirical study [J]. Fractals, 1995,3(4):785-798.
[2] Cristina Stolojescu. Long-range dependence in WiMAX traffic: a preliminary analysis[C]//International Symposium on Electronics and Telecommunications. Timisoara, Romania, 2010:241-244.
[3] Putra D R, Ke K W, Wu H T. Self-similar traffic assessment on QoS service classes of WiMAX network[C]//International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. Seoul, Korea, 2009: 558-563.
[4] IEEE 802.16 WG. IEEE standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access systems[S]. New York:IEEE, 2004.
[5] IEEE 802.16 WG. IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems, amendment 2: Physical and medium access control layers for combined fixed and mobile operation in Licensed bands and corrigendum[S]. New York:IEEE, 2006.
[6] Abry P, Veitch D. Wavelet analysis of long-range-dependent traffic[J]. IEEE Transactions on Information Theory, 1998, 44(1): 2-15.
[7] Abry P, Flandrin P, Taqqu M S, et al. Self-similarity and long-range dependence through the wavelet lens[M]//Long-Range Dependence: Theory and Applications. Boston:Birkhäuser,2003:527-556.
[8] Abry P, Goncalves P, Flandrin P. Wavelets, spectrum analysis and 1/f processes[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Minneapolis,USA,1993:237-240.
[9] Chen J H, Wang C C, Tsai F C D, et al. Design and implementation of WiMAX module for ns-2 simulator[C]//Proceedings of the Workshop on ns-2: the IP Network. New York, USA, 2006:1-6.
[10] Adas A. Traffic models in broadband networks[J]. IEEE Communications Magazine, 1997,35(7): 82-89.
[11] Fan Y H, Georganas N D. On merging and splitting of self-similar traffic in high-speed networks[C]//Proceedings of the 12th International Conference on Computer Communication on Information Highways. Seoul, Korea,1995:1-6.

备注/Memo

备注/Memo:
作者简介: 胡永东(1973—),男,博士生;吴国新(联系人),男,教授,博士生导师,gwu@seu.edu.cn.
基金项目: 江苏省自然科学基金资助项目(BK2011335).
引文格式: 胡永东,吴国新,徐逸卿.基于小波分析的WiMax网络业务流长相关性[J].东南大学学报:自然科学版,2013,43(1):1-5. [doi:10.3969/j.issn.1001-0505.2013.01.001]
更新日期/Last Update: 2013-01-20