[1]宋文慧,吴乐南.用于EBPSK系统的多径信道小波变换线性均衡器[J].东南大学学报(自然科学版),2013,43(1):12-16.[doi:10.3969/j.issn.1001-0505.2013.01.003]
 Song Wenhui,Wu Lenan.Wavelet based linear equalizer in EBPSK multipath channel system[J].Journal of Southeast University (Natural Science Edition),2013,43(1):12-16.[doi:10.3969/j.issn.1001-0505.2013.01.003]
点击复制

用于EBPSK系统的多径信道小波变换线性均衡器()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第1期
页码:
12-16
栏目:
信息与通信工程
出版日期:
2013-01-20

文章信息/Info

Title:
Wavelet based linear equalizer in EBPSK multipath channel system
作者:
宋文慧吴乐南
东南大学信息科学与工程学院, 南京 210096
Author(s):
Song Wenhui Wu Lenan
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
多径信道 EBPSK调制 小波线性均衡器 LMS均衡
Keywords:
multipath channel extended binary phase shift keying modulation wavelet linear equalizer least mean square(LMS)equalizer
分类号:
TN911.2
DOI:
10.3969/j.issn.1001-0505.2013.01.003
摘要:
为解决EBPSK信号使用经典均衡算法消除多径信道码间干扰时,自适应迭代的收敛速度较慢的问题,针对EBPSK系统运用基于小波变换的线性均衡器,将输入信号从时域变换到小波域后进行最小均方(LMS)线性均衡,同时根据不同信噪比仿真比较Haar小波、db6小波、sym6小波等经典小波的线性均衡器均衡效果.仿真结果表明:经过小波变换后输入信号的自相关矩阵的最大特征值与最小特征值之比较大,因此基于小波的线性均衡比经典均衡算法的最小均方误差(MSE)收敛速度明显提高,迭代次数和计算量都有所降低,且均衡器选用不同小波函数在一定程度上会影响误码率,但不明显,其中基于Haar小波比基于sym6小波和db6小波的LMS均衡算法的误码率要低.
Abstract:
The adaptive iterative convergence of classic equalize algorithm to eliminate inter-symbol interference in the extended binary phase shift keying(EBPSK)modulation system is slow. In order to improve it, this paper uses wavelet based linear equalizer for EBPSK system, which transforms the input signal from the time domain into the wavelet domain, then uses least mean square(LMS)linear equalizer. Meanwhile, under various signal-to-noise ratios this paper compares the results of different classical wavelet based linear equalizer, i.e., the Haar, db6, sym6 wavelet. Simulation results show that after wavelet transforming the ratio of the maximum and minimum eigenvalues of the autocorrelation matrix of the input signal is larger. Thus, the convergence speed of minimum mean square error(MSE)based on wavelet-based linear equalizer is faster than that of the widely used classic equalization algorithm, and the number of iterations and computation cost are reduced. Selecting different wavelet function for equalizer affects the error rate to some extent, but the effect is not obvious, while the error rate based on Haar wavelet LMS equalization algorithm is lower than that of sym6 wavelet and db6 wavelet.

参考文献/References:

[1] 吴乐南.超窄带高速通信进展[J].自然科学进展, 2007, 17(11): 1467-1473.
  Wu Lenan.The innovation of UNB transfer system[J]. Progress in Natural Science, 2007, 17(11): 1467-1473.(in Chinese)
[2] Qi Chenhao, Feng Man,Wu Lenan. Analysis of transmission system based on phase locked loop [C]//The Third International Conference on Natural Computation. Haikou,China, 2007, 2: 415-419.
[3] Tuchler M, Singer A C, Koetter R. Minimum mean squared error equalization using a priori information [J]. IEEE Transactions on Signal Processing, 2002, 50(3): 673-683.
[4] Doroslovacki M, Fan Hong. Wavelet-based adaptive filtering [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing.Minneapolis, MN, USA,1993, 3: 488-491.
[5] 马力,冯熳,吴乐南. EBPSK数字接收滤波器设计 [J]. 科技创新导报, 2008(28):28-29.
  Ma Li, Feng Man, Wu Lenan. Digital receive filters based EBPSK system[J]. Science and Technology Innovation Herald, 2008(28): 28-29.(in Chinese)
[6] Lee G H, Choi J, Park R H,et a1. Modification of the reference signal for fast convergence in LMS-based adaptive equalizers [J]. IEEE Transactions on Consumer Electronics, 1994, 40(3): 645-654.
[7] Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections [J]. IEEE Transactions on Information Theory, 1998, 44(7): 2943-2959.
[8] Wang F, Wang Q G. A new adaptive equalizer based on gene SPILL algorithm image and signal processing [C]//Congress on Image and Signal Processing. Sanya, China, 2008, 1: 41-44.
[9] Mallat S, Hwang W L. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
[10] Daubechies I. The wavelet transform, time-frequency localization and signal analysis [J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005.
[11] Erdol N, Basbug F. Performance of wavelet transform based adaptive filters [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Minneapolis, MN, USA, 1993, 3: 500-503.
[12] Hosur S, Tewfik A H. Wavelet transform domain LMS algorithm [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Minneapolis, MN, USA, 1993, 3: 508-510.
[13] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[14] Liu Feng, Cheng Jun, Xu Jinbiao,et al. Wavelet based adaptive equalization algorithm [C]//Global Telecommunications Conference. Phoenix, AZ, USA, 1997, 3:1230-1234.
[15] 吴乐南,常虹. 一种短波变速通信系统和方法:中国, 201110180604.5[P]. 2011-07-03.
[16] Styvaktakis E,Gu I Y H,Bollen M H J, et al. Event-based transient categorization and analysis in electric power systems [C]//IEEE International Conference on Systems, Man and Cybernetics. Washington, DC, USA, 2003, 5: 4176-4183.
[17] Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996.

备注/Memo

备注/Memo:
作者简介: 宋文慧(1988—),女,硕士生;吴乐南(联系人),男,博士,教授,博士生导师,wuln@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(60872075).
引文格式: 宋文慧,吴乐南.用于EBPSK系统的多径信道小波变换线性均衡器[J].东南大学学报:自然科学版,2013,43(1):12-16. [doi:10.3969/j.issn.1001-0505.2013.01.003]
更新日期/Last Update: 2013-01-20