[1]庄哲民,吴力科,路小波.基于不平衡扩展模型的火灾信息分布式压缩感知[J].东南大学学报(自然科学版),2013,43(1):39-44.[doi:10.3969/j.issn.1001-0505.2013.01.008]
 Zhuang Zhemin,Wu Like,Lu Xiaobo.Distributed compressed fire signal sensing based on unbalance expander[J].Journal of Southeast University (Natural Science Edition),2013,43(1):39-44.[doi:10.3969/j.issn.1001-0505.2013.01.008]
点击复制

基于不平衡扩展模型的火灾信息分布式压缩感知()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第1期
页码:
39-44
栏目:
计算机科学与工程
出版日期:
2013-01-20

文章信息/Info

Title:
Distributed compressed fire signal sensing based on unbalance expander
作者:
庄哲民1吴力科1路小波2
1汕头大学电子系, 汕头515063; 2东南大学自动化学院, 南京210096
Author(s):
Zhuang Zhemin1 Wu Like1 Lu Xiaobo2
1Department of Electronics, Shantou University, Shantou 515063, China
2School of Automation, Southeast University, Nanjing 210096, China
关键词:
无线传感网络 分布式压缩感知 不平衡扩展模型 稀疏测量矩阵
Keywords:
wireless sensor networks distributed compressive sensing unbalance expander model sparse measurement matrix
分类号:
TP393
DOI:
10.3969/j.issn.1001-0505.2013.01.008
摘要:
针对无线传感网络数据传输与计算的不均衡而导致部分节点能耗大的问题,首先结合图论中二部图思想,将不平衡扩展模型应用在分布式压缩感知上,并设计出一种与该架构相对应的分布式算法.该算法通过一个列稀疏度确定的稀疏随机二值矩阵决定节点之间是否实现数据传输,从而将传输和计算任务平均分散在各个节点,并利用二阶锥形规划法对融合中心的数据进行重构.最后,在火灾场中利用不平衡扩展模型的分布式压缩感知网络进行仿真实验,并对算法的优越性和网络的节能性作出详细分析.在仿真过程中,通过分析均方误差和信噪比证明所提出的模型不仅在降低节点能耗上有较好的效果,而且在有噪声环境中可以很好地保证信号的重构性能.
Abstract:
In wireless sensor networks, the huge power consumption of part of nodes brings great hardship for various applications, which is caused by the unbalanced data transmission and calculation. To solve this problem, using bipartite graph thought in graph theory,distributed compressive sensing network architecture based on unbalanced expander is proposed. Meanwhile the distributed algorithm corresponding to the architecture is designed. This algorithm decides whether or not to transmit data through a fixed column sparse degree sparse random bipartite matrix, then decentralize the transmission and calculation mission to every node equally and reconstruct the data in fusion center by using second-order cone programming. Finally the distributed compressive sensing network based on unbalanced expander is applied to the fire ground simulation experiment and the superiority of the algorithm and the energy conservation of the network are analyzed in detail. In the process of simulation, through analysis of the mean square error and signal-to-noise ratio, it is proved that the proposed model not only has good effect on reducing nodes energy consumption but also ensures the performance for the signal reconstruction in noisy case.

参考文献/References:

[1] Mhmudimanesh M,Khelil A, Suri N. Reordering for better compressibility:efficient spatial sampling in wireless sensor networks [C]//The Third IEEE International Conference on Sensor Network,Ubiquitous,and Trustworthy Computing.Newport Beach, CA, USA,2010:50-57.
[2] Hu Haifeng,Yang Zhen. Spatial correlation-based distributed compressed sensing in wireless sensor networks[C]//Wireless Communications Networking and Mobile Computing. Chengdu,China, 2010:1-4.
[3] Luo Chong,Wu Feng,Sun Jun, et al. Compressive data gathering for large-scale wireless sensor networks [C]//Proceedings of the 15th Annual International Conference on Mobile Computing and Network. Beijing, China, 2009:145-156.
[4] Wang Wei, Garofalakis M, Ramchandran K W. Distributed sparse random projections for refinable approximation [C]//Proceedings of the Sixth International Symposium on Information Processing in Sensor Networks. Cambridge, MA,USA,2007:331-339.
[5] Sipser M, Spielman D A. Expander codes [J]. IEEE Transaction on Information Theory,1996, 42(6):1710-1722.
[6] Berinde R,Gilbert A C,Indyk P, et al. Combining geometry and combinatorics: a unified approach to sparse signal recovery [C]//46th Annual Allerton Conference on Communication,Control,and Computing. Urbana-Champaign,IL, USA, 2008:798-805.
[7] Xu Weiyu,Hassibi Babak. Efficient compressive sensing with deterministic guarantees using expander graphs [C]//IEEE Information Theory Workshop. Tahoe City, CA,USA,2007:414-419.
[8] Otero Daniel, Arce Gonzalo R.Generalized restricted isometry property for alpha-stable random projections[C]//IEEE International Conference on Acoustics,Speech and Signal Processing. Prague, Czech Republic,2011:3676-3679.
[9] Yuen K,Liang B,Li B.A distributed framework for correlated data gathering in sensor network[J].IEEE Trans-actions on Vehicular Technology, 2008,57(1):578-593.
[10] Jafarpour Sina, Xu Weiyu, Hassibi Babak,et al. Efficient and robust compressed sensing using optimized expander graphs[J]. IEEE Transactions on Information Theory,2009,55(9):4299-4308.
[11] Lan Lihui,Ju Shiguang,Jin Hua. Anonymizing social network using bipartite graph [C]//Information Sciences on Computational and International Conference. Washington, DC, USA: IEEE Computer Society, 2010:993-996.
[12] de Castro Yohann. Error prediction and variable selection via unbalance [J].Statistics Theory,2010,4:1-15.
[13] Emmanuel Candes, Romberg Justin. L1-MAGIC: recovery of sparse signals via convex programming [EB/OL].(2009-01-22)[2011-08]. http://users.ece.gatech.edu/justin/l1magic/downloads/l1magic.pdf.
[14] 石光明,刘丹华,高大化,等.压缩感知理论及研究进展[J]. 电子学报, 2009,37(5):1070-1081.
  Shi Guangming,Liu Danhua,Gao Dahua, et al.Advances in theory and application of compressed sensing[J].Acta Electronica Sinica, 2009,37(5):1070-1081.(in Chinese)
[15] Kang Jian,Tang Liwei,Zuo Xianzhang,et al. Distributed compressed sensing-based data fusion in sensor networks[C]//First International Conference on Pervasive Computing Signal Processing and Applications. Harbin, China,2010:1083-1086.

备注/Memo

备注/Memo:
作者简介: 庄哲民(1965—),男,博士,教授,zmzhuang@stu.edu.cn.
基金项目: 国家自然科学基金面上资助项目(61070152)、广东省重大科技计划项目资金资助项目(2011A080404005)、汕头大学科研基金资助项目(NTF10012).
引文格式: 庄哲民,吴力科,路小波.基于不平衡扩展模型的火灾信息分布式压缩感知[J].东南大学学报:自然科学版,2013,43(1):39-44. [doi:10.3969/j.issn.1001-0505.2013.01.008]
更新日期/Last Update: 2013-01-20