[1]张岩琛,杲东彦,陈振乾.基于格子Boltzmann方法的孔隙率对泡沫金属内相变材料融化传热的影响[J].东南大学学报(自然科学版),2013,43(1):94-98.[doi:10.3969/j.issn.1001-0505.2013.01.018]
 Zhang Yanchen,Gao Dongyan,Chen Zhenqian.Influence of porosity on melting of phase change materials in metal foams with lattice Boltzmann method[J].Journal of Southeast University (Natural Science Edition),2013,43(1):94-98.[doi:10.3969/j.issn.1001-0505.2013.01.018]
点击复制

基于格子Boltzmann方法的孔隙率对泡沫金属内相变材料融化传热的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第1期
页码:
94-98
栏目:
能源与动力工程
出版日期:
2013-01-20

文章信息/Info

Title:
Influence of porosity on melting of phase change materials in metal foams with lattice Boltzmann method
作者:
张岩琛1杲东彦2陈振乾1
1东南大学能源与环境学院, 南京210096; 2南京工程学院能源与动力工程学院, 南京211167
Author(s):
Zhang Yanchen1 Gao Dongyan2 Chen Zhenqian1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
格子Boltzmann方法 泡沫金属 相变材料 固液相变
Keywords:
lattice Boltzmann method metal foams phase change materials solid-liquid phase change
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2013.01.018
摘要:
基于局部热非平衡条件在表征单元尺度上构建出双温度分布函数的格子Boltzmann方程,用该方程来表征泡沫金属骨架与相变材料融化传热的温度场,用密度分布函数演化方程来表征融化液相速度场.然后模拟了泡沫金属内相变材料融化界面位置随时间的变化及金属骨架和相变材料的温度分布情况.模拟结果与其他文献的计算结果吻合较好.重点分析了泡沫金属孔隙率对相变材料融化传热的影响.结果表明,孔隙率的减少有利于增强金属骨架热传导换热的作用,但也会导致自然对流传热的降低及相变材料蓄热量的减少.因此在设计泡沫金属蓄热装置时,对于孔隙率的确定需要结合工程需求进行选择.
Abstract:
Under local thermal non-equilibrium conditions, a lattice Boltzmann model based on double temperature equations was constructed to characterize the temperature field of metal foams framework and heat conduction of phase change materials in metal foams, and a equation based on density distribution function was constructed to characterize the velocity field of melt fluid. The melting front locations as a function of time and the temperature field were simulated by the lattice Boltzmann model. The results agree well with the results obtained in other literature. Then, the effects of porosity on the melting processes of phase change materials were investigated. The results show that the decrease of the porosity results in the increasing conduction heat transfer, the decreasing convection heat transfer and the decreasing heat storage capacity. Therefore, it is suggested to consider engineering requirements to determine porosity in the design of the foam metal heat storage device.

参考文献/References:

[1] Hutter C, Buchi D, Zuber V, et al. Heat transfer in metal foams and designed porous media [J]. Chemical Engineering Science, 2011, 66(17): 3806-3814.
[2] Gao D Y, Chen Z Q. Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media [J]. International Journal of Thermal Sciences, 2011, 50(4): 493-501.
[3] Krishnan S, Murthy J Y, Garimella S V. A two-temperature model for solid-liquid phase change in metal foams [J]. Journal of Heat Transfer, 2005, 127(9): 995-1004.
[4] 彭冬华,陈振乾,施明恒. 泡沫金属内相变材料融化传热过程的数值模拟[J]. 工程热物理学报, 2009, 30(6): 1025-1028.
  Peng Donghua, Chen Zhenqian, Shi Minheng. Numerical simulation of phase change material thawing process in metallic foams [J]. Journal of Engineering Thermophysics, 2009, 30(6): 1025-1028.(in Chinese)
[5] Lafdi K, Mesalhy O, Shikh S. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials [J]. Journal of Applied Physics, 2007, 102(8): 083549.
[6] 王杰利,屈治国,李文强,等. 封装有相变材料的金属泡沫复合散热器实验研究[J]. 工程热物理学报,2011,32(2):295-298.
  Wang Jieli, Qu Zhiguo, Li Wenqiang, et al. Experimental study of hybrid heat sink sintered with metal foams filled with phase change materials [J]. Journal of Engineering Thermophysics, 20011, 32(2): 295-298.(in Chinese)
[7] Semma E A, Gauaoui M E, Bennacer R. Lattice Boltzmann method for melting/solidification problems[J]. Comptes Rendus Mecanique, 2007, 335(5/6): 295-303.
[8] 杲东彦,陈振乾.格子Boltzmann方法模拟自然对流条件下融化传热过程[J].计算物理,2011,28(3):390-396.
  Gao Dongyan, Chen Zhenqian. Lattice Boltzmann method for heat transfer in melting with natural convection [J]. Chinese Journal of Computational Physics, 2011, 28(3): 390-396.(in Chinese)
[9] Huber C, Parmigiani A, Chopard B, et al. Lattice Boltzmann model for melting with natural convection [J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1469-1480.
[10] Guo Z L, Zhao T S. A lattice Boltzmann model for convection heat transfer in porous media [J]. Numerical Heat Transfer Part B, 2005, 47(2): 157-177.
[11] Seta T, Takegoshi E, Okui K. Lattice Boltzmann simulation of natural convection in porous media [J]. Mathematics and Computers in Simulation, 2006, 72(2/3/4/5/6): 195-200.
[12] Calmidi V V. Transport phenomena in high porosity metal foams [D]. Boulder, USA: University of Colorado, 1998.
[13] Calmidi V V, Mahajan R L. Forced convection in high porosity metal foams [J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
[14] Churchill S W, Chu H H S. Correlating equations for laminar and turbulent free convection from a vertical plate [J]. International Journal of Heat and Mass Transfer, 1975, 18(11): 1323-1329.
[15] Shi B C, Guo Z L. Lattice Boltzmann model for nonlinear convection-diffusion equations [J]. Physical Review E, 2009, 79(1): 016701.
[16] Guo Z L, Zheng C G, Shi B C. An extrapolation method for boundary conditions in lattice Boltzmann method [J]. Physics of Fluids, 2002, 14(6): 2007-2010.
[17] Tang G H, Tao W Q, He Y L. Thermal boundary conditions for the thermal lattice Boltzmann equation [J]. Physical Review E, 2005, 72(1): 016703.

相似文献/References:

[1]张勇,闻德荪,舒光冀,等.铝液在多孔介质中渗流过程的模拟试验研究[J].东南大学学报(自然科学版),1993,23(5):78.[doi:10.3969/j.issn.1001-0505.1993.05.012]
 Zhang Yong,Wen Desun,Shu Guangji,et al.An Experimental Investigation of the Simulation of Low-Pressure Infiltration of Molten Aluminium in Porous Medium[J].Journal of Southeast University (Natural Science Edition),1993,23(1):78.[doi:10.3969/j.issn.1001-0505.1993.05.012]

备注/Memo

备注/Memo:
作者简介: 张岩琛(1986—),男,硕士生;陈振乾(联系人),男,博士,教授,博士生导师, zqchen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50776015, 51206076)、 “十二五”国家科技支撑计划资助项目(2012BBA07B02)、科技部国际科技合作技术交流专项资助项目(2011DFA60290).
引文格式: 张岩琛,杲东彦,陈振乾.格子Boltzmann方法研究孔隙率对泡沫金属内相变材料融化传热的影响[J].东南大学学报:自然科学版,2013,43(1):94-98. [doi:10.3969/j.issn.1001-0505.2013.01.018]
更新日期/Last Update: 2013-01-20