# [1]丁胜勇,邵国建.Wachspress型多边形有限元法积分方案[J].东南大学学报(自然科学版),2013,43(1):216-220.[doi:10.3969/j.issn.1001-0505.2013.01.039] 　Ding Shengyong,Shao Guojian.Integration scheme of Wachspress interpolation polygonal finite element method[J].Journal of Southeast University (Natural Science Edition),2013,43(1):216-220.[doi:10.3969/j.issn.1001-0505.2013.01.039] 点击复制 Wachspress型多边形有限元法积分方案() 分享到： var jiathis_config = { data_track_clickback: true };

43

2013年第1期

216-220

2013-01-20

## 文章信息/Info

Title:
Integration scheme of Wachspress interpolation polygonal finite element method

Author(s):
Department of Engineering Mechanics, Hohai University, Nanjing 210098, China

Keywords:

TP391
DOI:
10.3969/j.issn.1001-0505.2013.01.039

Abstract:
According to three kinds of Wachspress interpolation based shape function of polygonal element, the characteristics of their structural forms are discussed. The formula of partial derivative is derived by applying the best reasonable structural form and the polygonal FEM(finite element method)formulations are established. The current integration scheme in the polygonal FEM is studied. Based on this, the Gaussian integration, which is widely used in traditional FEM, is applied to the integration scheme of polygonal FEM. Numerical examples are presented to demonstrate the rationality and effectiveness of the proposed method. And the suggestion of selecting the number of the Gaussian integration points in different grids is given. The rationality of the polygonal FEM in mixed mesh is tested, and the feasibility of using the polygonal element as transition element in the coarse mesh and fine mesh is preliminarily discussed. This study provides a new idea to solve the transition problem of the coarse mesh and fine mesh in the FEM calculation.

## 参考文献/References:

[1] 范亚玲,张远高,陆明万.二维任意多边形有限单元[J]. 力学学报, 1995,27(6):742-746.
Fan Yaling, Zhang Yuangao, Lu Mingwan. Arbitrarily polygonal 2-D finite elements[J]. Acta Mechanica Sinica, 1995,27(6):742-746.(in Chinese)
[2] 唐旭海,郑超,张建海.多边形有限元法模拟裂纹扩展[C]//第17届全国结构工程学术会议论文集(第Ⅰ册). 武汉,2008:446-450.
[3] Wachspress E L. A rational finite element basis[M]. New York: Academic Press, Inc, 1975.
[4] 王兆清. 多边形有限元研究进展[J]. 力学进展, 2006,36(3):344-353.
Wang Zhaoqing. Advances in polygonal finite element method[J]. Advances in Mechanics, 2006,36(3):344-353.(in Chinese)
[5] Sukumar N, Malsch E A. Recent advances in the construction of polygonal finite element interpolants[J]. Archives of Computational Methods in Engineering,2006, 13(1): 129-163.
[6] Meyer M, Lee H, Barr A, et al. Generalized barycentric coordinates on irregular polygons [J]. Journal of Graphics Tools,2002, 7(1): 13-22.
[7] Dasgupta G, Asce M. Interpolants within convex polygons: Wachspress shape functions [J]. Journal of Aerospace Engineering, 2003, 16(1): 1-8.
[8] Malsch E A, Dasgupta G. Interpolations for temperature distributions: a method for all non-concave polygons[J]. International Journal of Solids and Structures, 2004,41(8):2165-2188.
[9] 蔡永昌,郭盛勇,杨健,等.多边形单元的构造新方法及实现[J].同济大学学报:自然科学版, 2009,37(7):883-887.
Cai Yongchang, Guo Shengyong, Yang Jian, et al. A new construction and implementation of polygonal elements[J]. Journal of Tongji University:Natural Science,2009,37(7):883-887.(in Chinese)
[10] 王兆清,李淑萍.多边形有限单元形函数的比较研究[J].应用力学学报,2007,24(4):604-608.
Wang Zhaoqing, Li Shuping. Some remarks on shape functions of polygonal finite element[J]. Chinese Journal of Applied Mechanics,2007, 24(4):604-608.(in Chinese)