[1]程琳,纪魁,蒲自源,等.路段型随机用户均衡敏感度分析[J].东南大学学报(自然科学版),2013,43(1):221-225.[doi:10.3969/j.issn.1001-0505.2013.01.040]
 Cheng Lin,Ji Kui,Pu Ziyuan,et al.Sensitivity analysis for link-based stochastic user equilibrium network flows[J].Journal of Southeast University (Natural Science Edition),2013,43(1):221-225.[doi:10.3969/j.issn.1001-0505.2013.01.040]
点击复制

路段型随机用户均衡敏感度分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第1期
页码:
221-225
栏目:
交通运输工程
出版日期:
2013-01-20

文章信息/Info

Title:
Sensitivity analysis for link-based stochastic user equilibrium network flows
作者:
程琳纪魁蒲自源王悦
东南大学交通学院, 南京210096
Author(s):
Cheng Lin Ji Kui Pu Ziyuan Wang Yue
School of Transportation, Southeast University, Nanjing 210096, China
关键词:
路段型随机用户均衡模型 敏感度分析 数学规划 Logit
Keywords:
link-based stochastic user equilibrium sensitivity analysis mathematical programming Logit
分类号:
U491.1
DOI:
10.3969/j.issn.1001-0505.2013.01.040
摘要:
为了设计基于Logit的随机用户均衡问题的高效算法,对传统的随机用户均衡模型熵项进行分解,得到路段型随机用户均衡模型.在分析路段型随机均衡模型及其优化条件的基础上,以数学规划的方法推导其敏感度方程,这相对于变分不等式的方法更加容易接受,同时因为确定型均衡模型是随机用户均衡模型的一种特例,所以此方法同样适用于确定型用户均衡的敏感度分析.以相继平均算法和敏感度矩阵对算例进行求解,两者结果基本吻合.同时对实际遇到的秩亏问题,提出“分段求解”的方法,有效地解决了矩阵无法求逆的现象.
Abstract:
In order to explore an efficient algorithm for the Logit-based stochastic user equilibrium(SUE)problem, the conventional entropy of the SUE model was decomposed to get the link-based SUE model. In this paper, based on analysis of the Link-based SUE model and its optimizing conditions, a mathematical programming method of sensitivity analysis for the model is presented. The method is more likely to be accepted relative to the variational inequality method. Since user equilibrium in a traffic network is an extreme case of SUE, the method can be used for the Wardropian equilibrium also. Numerical examples are solved by the method of successive averages algorithm and the sensitivity matrixes, both results are consistent. The “segmented solution” method is given to deal with the rank defect, solving the phenomena of the matrixes which cant be inversed effectively.

参考文献/References:

[1] 陆化普,黄海军.交通规划理论研究前沿[M].北京:清华大学出版社,2007.
[2] Tobin R L, Friesz T L. Sensitivity analysis for equilibrium network flow [J]. Transportation Science, 1988, 22(4): 242-250.
[3] Ying J Q, Miyagi T. Sensitivity analysis for stochastic user equilibrium network flows—a dual approach [J]. Transportation Science, 2001, 35(2):124-133.
[4] Clark S D, Watling D P. Probit-based sensitivity analysis for general traffic network [J]. Journal of the Transportation Research Board, 2000, 1733:88-95.
[5] 程琳,王炜,王京元,等,用户均衡网络中的敏感度分析方法[J].系统工程理论与实践, 2004, 24(11):116-121.
  Cheng Lin, Wang Wei, Wang Jingyuan, et al. Solution to sensitivity analysis for the equilibrium network flow [J]. Systems Engineering—Theory & Practice, 2004, 24(11):116-121.(in Chinese)
[6] Akamatsu T. Decomposition of path choice entropy in general transport network [J]. Transportation Science, 1997, 31(4): 349-362.
[7] Fiacco A V. Introduction to sensitivity and stability analysis in nonlinear programming [M]. New York: Academic Press, 1983.
[8] Lee D H, Meng Q, Deng W J. Origin-based partial linearization method for stochastic user equilibrium traffic assignment problem [J]. Journal of Transportation Engineering, 2010,136(1):52-60.
[9] Bell M G H. Alternatives to Dials logit assignment algorithm [J]. Transportation Research, 1995, 29(4): 287-295.
[10] Dial R B. A probabilistic multipath traffic assignment model which obviates path enumeration [J]. Transportation Research, 1971, 5(2): 83-111.

相似文献/References:

[1]赵静,靳慧,宫维佳.含铸钢节点钢结构的随机结构分析[J].东南大学学报(自然科学版),2015,45(6):1124.[doi:10.3969/j.issn.1001-0505.2015.06.018]
 Zhao Jing,Jin Hui,Gong Weijia.Stochastic structural analysis of steel structure containing cast steel nodes[J].Journal of Southeast University (Natural Science Edition),2015,45(1):1124.[doi:10.3969/j.issn.1001-0505.2015.06.018]

备注/Memo

备注/Memo:
作者简介: 程琳(1963—),男,博士,教授,博士生导师,gist@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51078085,51178110).
引文格式: 程琳,纪魁,蒲自源,等:路段型随机均衡敏感度分析[J].东南大学学报:自然科学版,2013,43(1):221-225. [doi:10.3969/j.issn.1001-0505.2013.01.040]
更新日期/Last Update: 2013-01-20