[1]冯径,张梁梁,沈晔,等.基于压缩感知的云存储系统状态监测方法[J].东南大学学报(自然科学版),2013,43(2):296-300.[doi:10.3969/j.issn.1001-0505.2013.02.013]
 Feng Jing,Zhang Liangliang,Shen Ye,et al.State detection method for cloud storage system based on compressive sensing[J].Journal of Southeast University (Natural Science Edition),2013,43(2):296-300.[doi:10.3969/j.issn.1001-0505.2013.02.013]
点击复制

基于压缩感知的云存储系统状态监测方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第2期
页码:
296-300
栏目:
计算机科学与工程
出版日期:
2013-03-20

文章信息/Info

Title:
State detection method for cloud storage system based on compressive sensing
作者:
冯径1张梁梁1沈晔1梁陆萍2
1解放军理工大学气象海洋学院气象水文指挥系, 南京 211101; 2解放军理工大学第六十三研究所, 南京 210007
Author(s):
Feng Jing1 Zhang Liangliang1 Shen Ye1 Liang Luping2
1Department of Meteorological and Hydrological Operations Command in Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China
2The 63rd Research Institute of PLA University of Science and Technology, Nanjing 210007, China
关键词:
云存储 压缩感知 SDCS 状态重构 状态监测
Keywords:
cloud storage compressive sensing SDCS(state detection with compressive sensing) status reconstruction status detection
分类号:
TP301.6
DOI:
10.3969/j.issn.1001-0505.2013.02.013
摘要:
为了解决大规模状态监测数据处理中高精度与大规模之间的矛盾,利用压缩感知处理宽带信号优于奈奎斯特采样定律的特性, 提出了一种适合于测量云存储系统状态的压缩感知状态监测方法SDCS.该方法是在经典匹配追踪MP算法的基础上,增加贝努利矩阵行和为零的约束条件而得到的,可用于测量含直流分量的稀疏信号,并保证原始的重构算法依然满足改进后的目标函数.然后,利用仿真实验测评了该方法在蚁群文件系统FFS状态监控中的应用效果.实验测试结果表明,针对稀疏度为10的状态信息,当测量次数大于70时,所有异常结点可被精确定位,且压缩比率达到3.5%,说明该方法能有效压缩监测流量,满足大规模数据高精度检测的要求.
Abstract:
To solve the contradiction between precision and scale when dealing with large-scale data, by means of compressive sensing in signal processing which is superior to the Nyquist, a method called SDCS(state detection with compressive sensing)for detecting the state of cloud storage system is proposed. Based on the typical MP(matching pursuit)algorithm, this method is developed by adding the constraint condition that the sum of the rows in Bernoulli measurement matrix equals zero. The SDCS can measure sparse signals containing direct current component and ensure the equivalence between the improved target function and the original one. Then, this method is applied to state detection of FFS(formicary file system).The experimental results show that for the status signs with the sparse degree of 10, when the number of detection is more than 70, all the abnormal nodes can be fixed accurately and the compression ratio is 3.5%, indicating that this method can improve the efficiency of locating the abnormal nodes and satisfy the requirement of high precision detection for the large scale system.

参考文献/References:

[1] Kung H T, Lin C K, Vlah D. CloudSense: continuous fine-grain cloud monitoring with compressive sensing[C]//Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Computing. Portland, OR, USA, 2011:15-19.
[2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3] Candes E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006(3): 1433-1452.
[4] Lei L, Wo T Y, Hu C M. CREST: towards fast speculation of straggler tasks in MapReduce[C]//Proceedings of the IEEE 8th International Conference on E-business Engineering. Beijing, China, 2011: 311-316.
[5] Tom White. Hadoop: the definitive guide[M]. Sebastopol, CA, USA:ORelly Media Inc, 2011: 170-173.
[6] Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Computes Rendus Mathematique, 2008, 346(9/10): 589-592.
[7] Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
[8] Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3): 253-263.
[9] Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations[J]. Constructive Approximation, 1997, 13(1): 57-98.
[10] Wu Haijia,Chen Weiwei,Hu Guyu. FFS: a PB-level cloud-storage system based on network [J]. Journal on Communications, 2011, 32(9): 24-33.
[11] Wu Haijia,Chen Weiwei, Liu Peng. Synchronization strategy for metadata cache in cloud storage system based on change-log[J]. Telecommunications Science,2011, 27(9): 32-36.

相似文献/References:

[1]余丰,奚吉,赵力,等.基于CS与K-SVD的欠定盲源分离稀疏分量分析[J].东南大学学报(自然科学版),2011,41(6):1127.[doi:10.3969/j.issn.1001-0505.2011.06.002]
 Yu Feng,Xi Ji,Zhao Li,et al.Sparse presentation of underdetermined blind source separation based on compressed sensing and K-SVD[J].Journal of Southeast University (Natural Science Edition),2011,41(2):1127.[doi:10.3969/j.issn.1001-0505.2011.06.002]
[2]李邺,等.一种结合稀疏表示和切比雪夫矩的人脸识别算法[J].东南大学学报(自然科学版),2012,42(2):249.[doi:10.3969/j.issn.1001-0505.2012.02.011]
 Li Ye,Chen Beijing,et al.Face recognition algorithm by using sparse representation and Tchebichef moments[J].Journal of Southeast University (Natural Science Edition),2012,42(2):249.[doi:10.3969/j.issn.1001-0505.2012.02.011]
[3]陈鹏,吴乐南.压缩感知在多载波EBPSK雷达中的应用[J].东南大学学报(自然科学版),2014,44(1):23.[doi:10.3969/j.issn.1001-0505.2014.01.005]
 Chen Peng,Wu Lenan.Compressive sensing for multi-carrier EBPSK radar[J].Journal of Southeast University (Natural Science Edition),2014,44(2):23.[doi:10.3969/j.issn.1001-0505.2014.01.005]
[4]赵小燕,周琳,吴镇扬.基于压缩感知的麦克风阵列声源定位算法[J].东南大学学报(自然科学版),2015,45(2):203.[doi:10.3969/j.issn.1001-0505.2015.02.001]
 Zhao Xiaoyan,Zhou Lin,et al.Compressed sensing-based sound source localization algorithm for microphone array[J].Journal of Southeast University (Natural Science Edition),2015,45(2):203.[doi:10.3969/j.issn.1001-0505.2015.02.001]

备注/Memo

备注/Memo:
作者简介: 冯径(1963—),女,博士,教授,博士生导师, fengjing863@gmail.com.
基金项目: 国家自然科学基金资助项目(61070174).
引文格式: 冯径,张梁梁,沈晔,等.基于压缩感知的云存储系统状态监测方法[J].东南大学学报:自然科学版,2013,43(2):296-300. [doi:10.3969/j.issn.1001-0505.2013.02.013]
更新日期/Last Update: 2013-03-20