[1]唐文来,彭倚天,倪中华.基于有限元分析的石墨烯弹性性能和振动特性[J].东南大学学报(自然科学版),2013,43(2):345-349.[doi:10.3969/j.issn.1001-0505.2013.02.022]
 Tang Wenlai,Peng Yitian,Ni Zhonghua.Elastic properties and vibration characteristics of graphene using finite element method[J].Journal of Southeast University (Natural Science Edition),2013,43(2):345-349.[doi:10.3969/j.issn.1001-0505.2013.02.022]
点击复制

基于有限元分析的石墨烯弹性性能和振动特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第2期
页码:
345-349
栏目:
材料科学与工程
出版日期:
2013-03-20

文章信息/Info

Title:
Elastic properties and vibration characteristics of graphene using finite element method
作者:
唐文来彭倚天倪中华
东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189
Author(s):
Tang Wenlai Peng Yitian Ni Zhonghua
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
关键词:
石墨烯 弹性性能 振动特性 有限元
Keywords:
graphene elastic properties vibration characteristics finite element
分类号:
TB383
DOI:
10.3969/j.issn.1001-0505.2013.02.022
摘要:
为了研究石墨烯的弹性性能和振动特性,采用集中质量单元代替碳原子、矩形梁单元来模拟碳-碳共价键,建立了石墨烯框架结构连续介质模型,并利用有限元方法对模型进行分析.结果表明:弹性性能与手性相关,扶手椅型石墨烯的弹性性能优于锯齿型;随着尺寸的增大,石墨烯逐渐表现出各向同性,其杨氏模量、剪切模量和泊松比分别趋于1.03TPa,440GPa和0.175.振动特性不依赖于手性,2种手性石墨烯的固有频率和振型基本一致;固有频率随尺寸的增大而减小,而对应的振型则保持不变;边界条件对固有频率和振型有很大影响,边界的约束越多得到的固有频率越大,且不同边界条件的石墨烯具有完全不同的振型.
Abstract:
In order to study the elastic properties and vibration characteristics of graphene, a frame structure continuum model is developed. The carbon atoms are represented by lumped masses, and C—C covalent bonds are modeled as rectangular beams. Then the continuum model is analysed using finite element method. The results show that the elastic properties of graphene correlate to the chirality, and armchair graphene have better elastic properties. Graphene may gradually become isotropic as the sizes increase. The Youngs modulus, shear modulus and Poissons ratio of graphene tends to be 1.03TPa,440GPa and 0.175, respectively. The vibration characteristics of graphene do not depend on the chirality. The natural frequencies of graphene decrease with the sizes, but the corresponding mode shapes remain unchanged. The boundary conditions have a great effect on the frequencies and mode shapes. The more the boundary constraints, the higher the natural frequencies of graphene. In addition, graphene with different boundary conditions have completely different mode shapes.

参考文献/References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.
[3] Lee C, Wei X D, Kysar J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[4] Bunch J S, van der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[5] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[6] Katsnelson M I. Graphene: carbon in two dimensions[J]. Materials Today, 2006, 10(1/2): 20-27.
[7] Liu F, Ming P M, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76(6): 064120-1-064120-7.
[8] Gupta S S, Batra R C. Elastic properties and frequencies of free vibrations of single-layer graphene sheets[J]. Journal of Computational and Theoretical Nanoscience, 2010, 7(10): 2151-2164.
[9] Li C, Chou T W. A structural mechanics approach for the analysis of carbon nanotubes[J]. International Journal of Solids and Structures, 2003, 40(10): 2487-2499.
[10] Sakhaee-Pour A. Elastic properties of single-layered graphene sheet[J]. Solid State Communications, 2009, 149(1/2): 91-95.
[11] Sakhaee-Pour A, Ahmadian M T, Naghdabadi R. Vibrational analysis of single-layered graphene sheets[J]. Nanotechnology, 2008, 19(8): 085702-1-085702-7.
[12] Shakouri A, Ng T Y, Lin R M. A new REBO potential based atomistic structural model for graphene sheets[J]. Nanotechnology, 2011, 22(29): 295711-1-295711-8.
[13] Li H J, Guo W L. Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C—C bonds[J]. Journal of Applied Physics, 2008, 103(10): 103501-1-103501-11.
[14] Zaeri M M, Ziaei-Rad S, Vahedi A, et al. Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper[J]. Carbon, 2010, 48(13): 3916-3930.
[15] Garcia-Sanchez D, van der Zande A M, Paulo A S, et al. Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 2008, 8(5): 1399-1400.

备注/Memo

备注/Memo:
作者简介: 唐文来(1987—),男,博士生;彭倚天(联系人),男,博士,副教授,博士生导师,yitianpeng@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51002030)、东南大学优秀青年教师资助项目.
引文格式: 唐文来,彭倚天,倪中华.基于有限元分析的石墨烯弹性性能和振动特性[J].东南大学学报:自然科学版,2013,43(2):345-349. [doi:10.3969/j.issn.1001-0505.2013.02.022]
更新日期/Last Update: 2013-03-20