[1]戎志丹,刘玉付,仲文静.ZrC基复合材料及微观结构分析[J].东南大学学报(自然科学版),2013,43(2):350-354.[doi:10.3969/j.issn.1001-0505.2013.02.023]
 Rong Zhidan,Liu Yufu,Zhong Wenjing.ZrC based composites by reactive melt infiltration[J].Journal of Southeast University (Natural Science Edition),2013,43(2):350-354.[doi:10.3969/j.issn.1001-0505.2013.02.023]
点击复制

ZrC基复合材料及微观结构分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第2期
页码:
350-354
栏目:
材料科学与工程
出版日期:
2013-03-20

文章信息/Info

Title:
ZrC based composites by reactive melt infiltration
作者:
戎志丹刘玉付仲文静
东南大学材料科学与工程学院, 南京211189; 东南大学江苏省土木工程材料重点实验室, 南京 211189
Author(s):
Rong Zhidan Liu Yufu Zhong Wenjing
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
熔渗法 碳化锆 微观结构 共晶
Keywords:
reactive melt infiltration ZrC microstructure eutectic
分类号:
TB332
DOI:
10.3969/j.issn.1001-0505.2013.02.023
摘要:
为了研发超高温陶瓷材料(耐高温2 000 ℃以上),采用熔渗法成功制备了ZrC基复合材料.对原材料配合比及固化压力的研究发现:在相同的固化压力下,随树脂含量增加,开孔率下降;在相同的固化压力及相同的树脂含量条件下,随着ZrC含量的增大,密度和开孔率也会随着升高;随着固化压力的增加,促进了气体的逸出,导致了闭孔的减少.根据以上研究,通过对原材料配合比及固化压力合理的优选与优化,获得适合渗锆反应的碳预制件.采用现代分析测试手段对ZrC基复合材料的微观组织和结构进行了系统研究,结果表明,制备的ZrC复合材料主要由连续ZrC、颗粒状ZrC和残余C组成,组织结构均匀,致密度较高,但其内部结构比较复杂,存在Zr-ZrC共晶相.
Abstract:
In order to research ceramic with high temperature resistance(>2 000 ℃), ZrC based ceramics was prepared by reactive melt infiltration. The research of raw materials and solidified pressure indicate that porosity decreases with the increase of resin content at the same solidified pressure. The density and the open porosity increases with the increase of ZrC content at the same solidified pressure and resin content. The increase of the solidified pressure can accelerate the escaping of gases and decrease the number of the closed pores, which benefit the infiltration of ZrC melt. The various mass ratios of original materials and the solidified pressure were optimized to obtain a porous carbon/carbon(C/C)skeleton. The microstructural features of the composite were revealed by modern analysis and testing methods. The results show that the composite is composed of continuous ZrC, island-like ZrC particles and residual carbon. The material is homogenous with relatively high density, whereas the microstructure is complex and eutectic phase Zr-ZrC is found.

参考文献/References:

[1] Krenkel W. C/C-SiC composites for hot structure and advanced friction systems[J]. Ceramic Engineering and Science Proceeding, 2003, 24(4): 583-592.
[2] 崔红,苏君明,李瑞珍,等. 添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报, 2000, 18(4): 669-673.
  Cui Hong, Su Junming, Li Ruizhen, et al. On improving anti-ablation property of mulit-matrix C/C to withstand 3 700K[J].Journal of Northwestern Polytechnical University,2000,18(4):669-673.(in Chinese)
[3] 李建章,张立同,成来飞,等.纤维增韧碳化硅陶瓷基复合材料的界面区研究[J].稀有金属材料与工程, 2007, 36(9): 1539-1544.
  Li Jianzhang, Zhang Litong, Cheng Laifei, et al. Interfacial zone on continuous fiber-reinforced ceramic composites[J]. Rare Metal Materials and Engineering, 2007, 36(9): 1539-1544.(in Chinese)
[4] Yan F Y, Zhang X H, Han J C, et al. Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics[J]. Materials and Design, 2008, 29(9): 1817-1820.
[5] Li H B, Zhang L T, Cheng L F, et al. Fabrication of 2D C/ZrC-SiC composite and its structural evolution under high-temperature treatment up to 1 800 ℃[J]. Ceramic International, 2009, 35(7): 2831-2836.
[6] 肖鹏,谢建伟,熊翔.3D C/SiC复合材料的力学性能[J].中南大学学报, 2008, 39(4): 718-722.
  Xiao Peng, Xie Jianwei, Xiong Xiang. Mechanical properties of three-dimensional braided C/SiC composites[J]. Journal of Central South University,2008,39(4):718-722.(in Chinese)
[7] Wang Z, Wu Z J, Shi G D. The oxidation behaviors of a ZrB2-SiC-ZrC ceramic[J]. Solid State Sciences, 2011, 13(3): 534-538.
[8] Li Q G, Dong S M, Wang Z, et al. Fabrication of a ZrC-SiC matrix for ceramic matrix composites via in-situ reaction and its application[J]. Ceramic International, 2013, 39(1): 877-881.
[9] Shen X T, Li K Z, Li H J, et al. The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame[J]. Corrosion Science, 2011,53(1):105-112.
[10] Naslain R R. SiC-matrix composites: nonbrittle ceramics for thermo-structural application[J]. International Journal of Applied Ceramic Technology, 2005,2(2): 75-84.
[11] Sciti D, Guicciardia S, Nygren M. Spark plasma sintering and mechanical behaviour of ZrC-based composites[J]. Scripta Materialia, 2008, 59(6): 638-641.
[12] Das B P, Panneerselvam M, Rao K J. A novel microwave route for the preparation of ZrC-SiC composites[J]. Journal of Solid State Chemistry, 2003, 173(1): 196-202.
[13] Ma B X, Han W B. Thermal shock resistance of ZrC matrix ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(2): 187-190.
[14] Zou L H, Wali N, Yang J M, et al. Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration[J]. Journal of the European Ceramic Society, 2010, 30(6): 1527-1535.
[15] Margiottaa J C, Zhang D J, Nagle D C. Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure [J].Journal of Material Research Society,2008, 23(5): 1237-1248.

备注/Memo

备注/Memo:
作者简介: 戎志丹(1981—),男,博士,讲师,zdrong@seu.edu.cn.
引文格式: 戎志丹,刘玉付,仲文静.ZrC基复合材料及微观结构分析[J].东南大学学报:自然科学版,2013,43(2):350-354. [doi:10.3969/j.issn.1001-0505.2013.02.023]
更新日期/Last Update: 2013-03-20