[1]刘志彬,陈志龙,杜延军,等.地下水曝气空气流动形态影响因素数值模拟[J].东南大学学报(自然科学版),2013,43(2):375-379.[doi:10.3969/j.issn.1001-0505.2013.02.028]
 Liu Zhibin,Chen Zhilong,Du Yanjun,et al.Numerical analysis of factors influencing air flow pattern during air sparging[J].Journal of Southeast University (Natural Science Edition),2013,43(2):375-379.[doi:10.3969/j.issn.1001-0505.2013.02.028]
点击复制

地下水曝气空气流动形态影响因素数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第2期
页码:
375-379
栏目:
环境科学与工程
出版日期:
2013-03-20

文章信息/Info

Title:
Numerical analysis of factors influencing air flow pattern during air sparging
作者:
刘志彬陈志龙杜延军方伟
东南大学交通学院, 南京 210096
Author(s):
Liu Zhibin Chen Zhilong Du Yanjun Fang Wei
School of Transportation, Southeast University, Nanjing 210096, China
关键词:
地下水曝气 流动形态 气相饱和度 影响半径 数值模拟
Keywords:
air sparging flow pattern air saturation radius of influence numerical simulation
分类号:
X523
DOI:
10.3969/j.issn.1001-0505.2013.02.028
摘要:
在阐明地下水曝气修复机理控制方程的基础上,对某污染场地地下水曝气修复中不同参数对气体流动形态的影响规律进行了数值模拟研究.结果表明:土体固有渗透率对曝气影响半径和分布形态有显著的影响,影响半径随土体固有渗透率的增大而减小;增加空气注入流量,曝气影响半径略有增大.当形成稳定流动形态后,再增加空气注入流量,曝气法影响半径提高有限;曝气影响半径基本不受地下水位线以下曝气井深度影响.实际工程中,曝气井位置应根据污染场地有机污染物分布深度确定;地下水流动对曝气井上游气体运移有抑制作用,对下游气体运动有放大作用,因此曝气法下游区域空气影响半径大于上游.
Abstract:
Based on the introduction of the governing equations of gas water two-phase flow during air sparging, the influence of different parameters on the air flow pattern in some contaminated site was studied through numerical analysis. The research results are as follows. The intrinsic permeability of soil has great influence on the radius of influence(ROI)and air distribution. ROI decreases with the increase of the soil permeability. As the flow rate of air is raised, ROI will increase a little. Once the stable flow pattern is formed, more flow rate will contribute little to the increase of ROI. The depth of air sparging well under the water table almost has no effect on ROI, therefore position of the well should be mainly determined by the depth of contamination scope. In addition, the air transportation is limited in upper reaches but enhanced in lower reaches, so the ROI of lower reaches is higher than that of upper reaches.

参考文献/References:

[1] Reddy K R, Kosgi S, Zhou Jinnan. A review of in-situ air sparging for the remediation of VOC-contaminated saturated soils and groundwater[J]. Hazardous Waste and Hazardous Materials, 1995, 12(2):97-118.
[2] Gao S Y, Meegoda J N, Hu L M. Microscopic modeling of air migration during air sparging[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15(2):70-79.
[3] Semer R, Adams J A, Reddy K R. An experimental investigation of air flow patterns in saturated soils during air sparging[J]. Geotechnical and Geological Engineering, 1998, 16(1):59-75.
[4] 胡黎明, 刘燕, 杜建廷,等. 地下水曝气修复过程离心模型试验研究[J]. 岩土工程学报, 2011, 33(2): 297-301.
  Hu Liming, Liu Yan, Du Jianting, et al. Centrifuge modeling of air-sparging technique for groundwater remediation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 297-301.(in Chinese)
[5] Hu Liming, Wu Xiaofeng, Liu Yan, et al. Physical modeling of air flow during air sparging remediation[J]. Environmental Science & Technology, 2010, 44(10):3883-3888.
[6] Elder C R, Benson C H. Air channel formation, size, spacing, and tortuosity during air sparging[J]. Ground Water Monitoring & Remediation, 1999, 19(3):171-181.
[7] Clayton W S. A field and laboratory investigation of air fingering during air sparging[J]. Ground Water Monitoring & Remediation, 1998, 18(3):134-145.
[8] Chao K P, Ong S K, Protopapas A. Water-to-air mass transfer of VOCs: laboratory-scale air sparging system[J]. Journal of Environmental Engineering, 1998, 124(11): 1054-1060.
[9] VanAntwerp D J, Falta R W, Gierke J S. Numerical simulation of field-scale contaminant mass transfer during air sparging[J]. Vadose Zone Journal, 2008, 7(1): 294.
[10] Falta R W. Numerical modeling of kinetic interphase mass transfer during air sparging using a dual-media approach[J]. Water Resources Research, 2000, 36(12):3391-3400.
[11] Jang W Y, Aral M M. Multiphase flow fields in in-situ air sparging and its effect on remediation[J]. Transport in Porous Media, 2009, 76(1):99-119.
[12] Fatt I, Klickoff W A. Effect of fractional wettability on multiphase flow through porous media[J]. Journal of Petroleum Technology, 1959, 11(10):71-76.
[13] 陈华清.原位曝气修复地下水NAPLs污染实验研究及模拟[D]. 武汉: 中国地质大学环境学院, 2010.
[14] Lundegard P D, Andersen G. Numerical simulation of air sparging performance[C]//Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water. Dublin, USA, 1993:461-476.
[15] Reddy K R, Adams J A. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging[J]. Journal of Hazardous Materials, 2000, 72(2/3):147-165.
[16] Adams J A, Reddy K R, Tekola L. Remediation of chlorinated solvent plumes using in-situ air sparging—a 2-D laboratory study[J]. International Journal of Environmental Research and Publich Health, 2011, 8(6):2226-2239.

相似文献/References:

[1]易哲宇,吴嘉峰,陈亚平,等.管排与V形丝网填料交替结构中液膜流动可视化实验[J].东南大学学报(自然科学版),2015,45(3):497.[doi:10.3969/j.issn.1001-0505.2015.03.015]
 Yi Zheyu,Wu Jiafeng,Chen Yaping,et al.Visualization study on liquid film flow pattern in tubes and V-shaped mesh alternating structure[J].Journal of Southeast University (Natural Science Edition),2015,45(2):497.[doi:10.3969/j.issn.1001-0505.2015.03.015]

备注/Memo

备注/Memo:
作者简介: 刘志彬(1976—),男,博士,讲师,seulzb@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(41272311)、高等学校博士学科点专项科研基金资助项目(20100092120049)、江苏省自然科学基金资助项目(BK2010060).
引文格式: 刘志彬,陈志龙,杜延军,等.地下水曝气空气流动形态影响因素数值模拟[J].东南大学学报:自然科学版,2013,43(2):375-379. [doi:10.3969/j.issn.1001-0505.2013.02.028]
更新日期/Last Update: 2013-03-20