[1]宗周红,夏坚,徐绰然.桥梁高墩抗震研究现状及展望[J].东南大学学报(自然科学版),2013,43(2):445-452.[doi:10.3969/j.issn.1001-0505.2013.02.040]
 Zong Zhouhong,Xia Jian,Xu Chaoran.Seismic study of high piers of large-span bridges: an overview and research development[J].Journal of Southeast University (Natural Science Edition),2013,43(2):445-452.[doi:10.3969/j.issn.1001-0505.2013.02.040]
点击复制

桥梁高墩抗震研究现状及展望()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第2期
页码:
445-452
栏目:
交通运输工程
出版日期:
2013-03-20

文章信息/Info

Title:
Seismic study of high piers of large-span bridges: an overview and research development
作者:
宗周红1夏坚2徐绰然1
1东南大学土木工程学院, 南京 210096; 2福州大学土木工程学院, 福州 350108
Author(s):
Zong Zhouhong1 Xia Jian2 Xu Chaoran1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
关键词:
大跨度桥梁 高墩 抗震分析 抗震试验 基于性能的抗震设计
Keywords:
large-span bridge high piers seismic analysis seismic experiments performance-based seismic design
分类号:
U442.5
DOI:
10.3969/j.issn.1001-0505.2013.02.040
摘要:
在简要说明桥梁高墩柱抗震特点的基础上,比较了国内外桥梁抗震设计规范的异同.然后,结合3类高墩——混凝土箱型墩柱、钢箱墩柱和钢管混凝土组合墩柱,总结回顾了国内外桥梁墩柱拟静力试验、拟动力试验和地震模拟振动台试验研究以及基于性能的抗震设计方法等方面的研究进展.最后,对桥梁高墩抗震有待进一步研究的问题和发展趋势进行了展望,可供大跨高墩桥梁抗震分析与设计以及桥梁墩柱抗震加固参考.
Abstract:
Based on the brief introduction of seismic characteristics of the high-pier bridges, the seismic codes at home and abroad are compared. The intensive seismic study of three types of high piers, including concrete piers with box-section, steel piers with rectangular hollow section and concrete filled tube composite piers, are summarized. The seismic experimental studies of pseudo-static testing, pseudo-dynamic testing, and earthquake simulation shaking tables testing, and the performance-based seismic design and analysis are reviewed. Finally, the state-of-the-art review in this field is presented, and current research development and challenges for further study are discussed. This kind of review may be used as a reference for the seismic design and seismic analysis, seismic assessment, and seismic strengthening of the large span bridges with high piers.

参考文献/References:

[1] 范立础,胡世德,叶爱君. 大跨度桥梁抗震设计[M]. 北京:人民交通出版社,2001.
[2] 谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
[3] 李乔,赵世春. 汶川大地震工程震害分析 [M]. 成都:西南交通大学出版社,2009.
[4] 普瑞斯特雷M J N,塞勃勒F,卡尔维G M. 桥梁抗震设计与加固 [M].袁万诚,等译. 北京:人民交通出版社,1999.
[5] 王克海. 桥梁抗震研究 [M]. 北京:中国铁道出版社,2007.
[6] 杨昀,周列茅,周勇军. 弯桥与高墩 [M].北京:人民交通出版社,2011.
[7] 中华人民共和国交通运输部. JTG/T B02-01—2008 公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
[8] 中华人民共和国建设部. GB 50111—2006 铁路工程抗震设计规范 [S].北京:中国计划出版社,2006.
[9] California Department of Transportation. Seismic design criteria [EB/OL].(2011-01-19)[2012-04-01].http://www.dot.ca.gov/hq/esc/techpubs/manual/othermanual/other-engin-manual/seismic-design-criteria/sdc.html.
[10] American Association of State Highway and Transportation Official. Guide specifications for LRFD seismic bridge design[S].Washington DC, USA: AASHTO,2007.
[11] European Committee for Standardization. EN 1998-2-2005 Eurocode 8:design of structures for earthquake resistance-part 2: bridges[S]. Brussels, Belgium: European Committee for Standardization, 2005.
[12] Railway Technical Research Institute. Design standards for railway structures and commentary(concrete structures)[EB/OL].(2007-03)[2012-04-01]. http://doc.baidu.com/view/09a8233987c24028915fc334.html.
[13] Railway Technical Research Institute. Design standards for railway structures and commentary(seismic design)[EB/OL].(2007-03)[2012-04-01]. http://wenku.baidu.com/view/7157d98b84868762caaed537.html.
[14] Standards Association of New Zealand. NZS 3101:1982 New Zealand standard code of practice for the design of concrete structures [S]. Wellington, New Zealand: Standards Association of New Zealand, 1982.
[15] 刘庆华,陈英俊. 低配筋混凝土桥墩抗震性能的实验研究[J]. 北方交通大学学报,1996,20(5):517-521.
  Liu Qinghua, Chen Yingjun. Experimental study on seismic behaviors of RC piers with low reinforcement ratio[J]. Journal of Northern Jiaotong University,1996, 20(5):517-521.(in Chinese)
[16] 鞠彦忠,阎贵平,刘林. 低配筋大比例尺园端型桥墩抗震性能的试验研究[J]. 土木工程学报,2003,36(11):65-69.
  Ju Yanzhong, Yan Guiping, Liu Lin. Experimental study on seismic behaviors of large-scale RC round-ended piers with low reinforcement ratio[J]. China Civil Engineering Journal, 2003, 36(11):65-69.(in Chinese)
[17] 王常峰. 桥梁结构非线性地震反应研究(支座摩擦、限位装置及基础非线性)[D]. 兰州:兰州交通大学土木工程学院,2010.
[18] 黄尚. 高速铁路桥梁基于性能的抗震设计方法研究[D]. 长沙:中南大学土木建筑学院,2011.
[19] 李小军. 铁路大跨桥梁新型高墩抗震性能研究[J]. 兰州交通大学学报,2009,28(4):49-53.(in Chinese)
  Li Xiaojun. Research on seismic performance of neotype tall pier for long-span railway bridges[J]. Journal of Lanzhou Jiaotong University, 2009, 28(4):49-53.(in Chinese)
[20] 孙卓,闫贵平,钟铁毅,等.钢筋混凝土桥墩抗震性能的试验研究之一——试验概况及试验结果[J]. 中国安全科学学报,2003,13(1):59-62.(in Chinese)
  Sun Zhuo, Yan Guiping, Zhong Tieyi, et al. Experimental study on anti-seismic performance of reinforced concrete bridge piers—part Ⅰ: brief introduction and result of the experiment[J]. China Safety Science Journal, 2003, 13(1):59-62.(in Chinese)
[21] 孙卓,闫贵平,钟铁毅,等.钢筋混凝土桥墩抗震性能的试验研究之二——试验结果分析与结论[J]. 中国安全科学学报,2003,13(3):46-49.(in Chinese)
  Sun Zhuo, Yan Guiping, Zhong Tieyi, et al. Experimental study on anti-seismic performance of reinforced concrete bridge piers—part Ⅱ: experimental result analysis and conclusion[J]. China Safety Science Journal, 2003, 13(3):46-49.(in Chinese)
[22] 鞠彦忠,阎贵平,李永哲. 低配筋铁路桥墩抗震性能的试验研究[J]. 铁道学报,2004,26(5):91-95.
  Ju Yanzhong, Yan Guiping, Li Yongzhe. Experimental research on aseismic performance of RC railway piers with low steel ratios[J]. Journal of the China Railway Society, 2004, 26(5):91-95.(in Chinese)
[23] 贾红梅. 客运专线圆端形桥墩的抗震性能研究[D]. 北京: 北京交通大学土木建筑工程学院,2008.
[24] 杜伟. 考虑土-结构相互作用的客运专线双柱式桥墩抗震性能研究[D]. 北京: 北京交通大学土木建筑工程学院,2009.
[25] 江成. 考虑土-结构相互作用的客运专线圆端板式桥墩抗震性能研究[D]. 北京: 北京交通大学土木建筑工程学院,2009.
[26] 李宇.考虑残余位移及土-结构相互作用的桥梁结构基于性能的抗震设计及评估[D]. 北京: 北京交通大学土木建筑工程学院,2010.
[27] 范立础,卓卫东. 桥梁延性抗震设计[M]. 北京:人民交通出版社,2001.
[28] 宋晓东.桥梁高墩延性抗震性能的理论与试验研究[D]. 上海:同济大学土木工程学院,2004.
[29] 梁智垚. 非规则高墩桥梁抗震设计理论研究[D]. 上海:同济大学土木工程学院,2007.
[30] 李建中,管仲国. 基于性能桥梁抗震设计理论发展[J]. 工程力学,2011,28(S2):24-30,53.
  Li Jianzhong, Guan Zhongguo. Performance-based seismic design for bridges[J]. Engineering Mechanics, 2011, 28(S2):24-30,53.(in Chinese)
[31] 刘艳辉. 基于性能抗震设计理论的城市高架桥抗震性能研究[D]. 成都:西南交通大学土木工程学院,2008.
[32] 刘振宇. 深水桥梁的地震响应研究[D]. 成都:西南交通大学土木工程学院,2008.
[33] 艾庆华,王东升,李宏男,等. 基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J].工程力学,2009, 26(4):158-166.
  Ai Qinghua, Wang Dongsheng, Li Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model[J]. Engineering Mechanics, 2009, 26(4):158-166.(in Chinese)
[34] 王东升,司炳君,孙治国,等. 地震作用下钢筋混凝土桥墩塑性铰区抗剪强度试验[J].中国公路学报,2011, 24(2):34-41.
  Wang Dongsheng, Si Bingjun, Sun Zhiguo,et al. Experiment on shear strength of reinforced concrete bridge column in plastic hinge zone under seismic effect[J]. China Journal of Highway and Transport, 2011, 24(2):34-41.(in Chinese)
[35] 孙治国,王东升,郭迅,等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报,2011, 24(5):56-64.
  Sun Zhiguo, Wang Dongsheng, Guo Xun, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. China Journal of Highway and Transport, 2011, 24(5):56-64.(in Chinese)
[36] 司炳君,孙治国,杜修力,等. 钢筋混凝土桥墩地震弯剪破坏机理与震后快速修复技术研究[J]. 土木工程学报,2011, 44(7):90-99.
  Si Bingjun, Sun Zhiguo, Du Xiuli,et al. Study on the seismic flexural-shear damage mechanisms and rapid repair techniques for earthquake damaged bridge piers[J]. China Civil Engineering Journal, 2011, 44(7):90-99.(in Chinese)
[37] 徐国锋. 高烈度区连续梁桥抗震设计初步研究[D]. 重庆: 重庆交通大学土木建筑工程学院,2009.
[38] 李贵乾. 钢筋混凝土桥墩抗震性能试验研究及数值分析[D]. 重庆:重庆交通大学土木建筑工程学院,2010.
[39] 崔海琴. 碳纤维约束空心薄壁墩抗震性能试验研究[D]. 西安: 长安大学公路学院, 2010.
[40] 张敏红. 中国公路桥梁抗震设计规范的变迁及对比研究[D]. 西安: 长安大学公路学院, 2010.
[41] 陆本燕,刘伯权,邢国华,等.桥梁结构基于性能的抗震设防目标与性能指标研究[J].工程力学,2011,28(11):96-103,137.
  Lu Benyan, Liu Boquan, Xing Guohua, et al. Study on fortification criterion and quantified performance index for reinforced concrete bridge structures in performance-based seismic design[J]. Engineering Mechanics, 2011, 28(11):96-103,137.(in Chinese)
[42] 王成博,史志利,李忠献. 随机地震动场多点激励下大跨度连续刚构桥的地震反应分析[J]. 地震工程与工程振动,2003,23(6):57-62.
  Wang Chengbo, Shi Zhili, Li Zhongxian. Seismic response analysis for long-span continuous rigid-framed bridges under multi-support excitations of random earthquake ground motions[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(6):57-62.(in Chinese)
[43] 吴奕琴. 基于Pushover分析的桥梁结构抗震评估方法的研究与应用[D]. 长沙: 中南林业科技大学土木工程与力学学院,2010.
[44] 左晓明. 钢筋混凝土桥墩试验研究及MAC有限元数值模拟[D]. 合肥: 合肥工业大学土木工程学院,2005.
[45] 奉策红. 钢筋混凝土箱型柱抗震性能的试验研究与分析[D]. 长沙: 湖南大学土木工程学院,2010.
[46] 宗周红,陈树辉,夏樟华. 钢筋混凝土箱型高墩双向拟静力试验研究[J]. 防灾减灾工程学报,2010,30(4):369-374.
  Zong Zhouhong, Chen Shuhui, Xia Zhanghua. Bi-axial quasi-static testing research of high hollow reinforced concrete piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(4):369-374.(in Chinese)
[47] 夏樟华, 宗周红, 程浩德. 双向拟静力加载规则对钢筋混凝土高墩滞回性能的影响[J]. 实验力学, 2012, 27(3): 343-353.
  Xia Zhanghua, Zong Zhouhong, Cheng Haode. Effect of bidirectional quasi-static loading rule on hysteretic properties of reinforced concrete high pier[J]. Journal of Experimental Mechanics, 2012, 27(3): 343-353.(in Chinese)
[48] 耿江玮. 高墩延性性能及设计方法研究[D]. 重庆:重庆交通大学土木建筑工程学院,2011.
[49] 韩林海. 钢管混凝土结构——理论与实践[M]. 2版.北京:科学出版社,2007.
[50] 中国工程建设标准化协会. CECS 254:2009 空心钢管混凝土结构技术规程[S]. 北京:中国建筑工业出版社,2009.
[51] 中国工程建设标准化协会标准. CECS 159:2004 矩形钢管混凝土结构技术规程 [S]. 北京:中国计划出版社,2004.
[52] 吕西林, 陆伟东. 反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(2):1-11.
  Lü Xilin, Lu Weidong. Seismic behavior of concrete-filled rectangular steel tubular columns under cyclic loading[J]. Journal of Building Structures, 2000, 21(2):1-11.(in Chinese)
[53] 陈敏海. 钢管混凝土高墩大跨连续刚构桥地震响应分析[D].长沙: 长沙理工大学土木与建筑学院, 2010.
[54] 胡宇. 钢管混凝土叠合格构柱高墩性能试验研究及非线性分析[D]. 成都: 西南交通大学土木工程学院, 2010.
[55] 王占飞,隋伟宁,吴权.E2 地震作用下部分填充钢管混凝土桥墩非线性时程分析及抗震性能评价[J]. 工程力学,2011,28(S1):189-194.
  Wang Zhanfei, Sui Weining, Wu Quan. Nonlinear time-history analysis and verification for seismic performance of partially concrete-filled steel bridge pier under E2 earthquake motion[J]. Engineering Mechanics, 2011, 28(S1):189-194.(in Chinese)
[56] 欧智箐,陈宝春.钢管混凝土格构柱发展和研究[J].福州大学学报:自然科学版,2008,36(4):585-591.
  Ou Zhiqing, Chen Baochun. Experimental research on concrete filled steel tubular laced columns compressed eccentrically[J]. Journal of Fuzhou University: Natural Science Edition, 2008, 36(4):585-591.(in Chinese)
[57] Priestley M J N,Park R. Strength and ductility of reinforced concrete bridge columns under seismic loading[J]. Structural Journal, 1987, 84(1):61-76.
[58] Priestley M J N, Benzoni G. Seismic performance of circular columns with low longitudinal reinforcement ratios[J]. Structural Journal, 1996, 93(4):474-485.
[59] Pinto A V, Molina J, Tsionis G. Monotonic and cyclic response of one-way reinforced concrete bridge pier hinges in the strong direction[J]. Structural Journal, 1993, 90(9):568-573.
[60] Janoyan K D, Wallace J W, Stewart J P. Full-scale cyclic lateral load test of reinforced concrete pier-column[J]. Structural Journal, 2006, 103(2):178-187.
[61] Xiao Y,Wu H. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J]. Journal of Structural Engineering, 2003, 129(6):725-732.
[62] Yeh Y K, Mo Y L, Yang C Y. Seismic performance of hollow circular bridge piers[J]. Structural Journal, 2001, 98(6): 862-871.
[63] Yeh Y K, Mo Y L, Yang C Y. Seismic performance of rectangular hollow bridge columns[J]. Journal of Structural Engineering, 2002, 128(l):60-80.
[64] Mo Y L, Nien I C. Seismic performance of hollow high-strength concrete bridge columns[J]. Journal of Bridge Engineering, 2002, 7(6):338-349.
[65] Mo Y L, Yeh Y K, Hsieh D M. Seismic retrofit of hollow rectangular bridge columns[J]. Journal of Composites for Construction, 2004, 8(1):43-51.
[66] Kitada T. Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan[J]. Engineering Structures, 1998, 20(6): 347-354.
[67] Nakamura S, Momiyama Y, Tetsuya H. New technologies of steel concrete composite bridges [J]. Journal of Constructional Steel Research, 2002, 58(1):99-130.
[68] Ge H B,Usami T. Cyclic tests of concrete-filled steel box columns[J]. Journal of Structural Engineering, 1996, 122(10):1169-1177.
[69] Usami T, Ge H B, Saizuka K. Behavior of partially concrete-filled steel bridge piers under cyclic and dynamic loading[J]. Journal of Construction Steel Research, 1997, 41(2/3):121-136.
[70] Ge H B, Susantha K, Satake Y, et al. Seismic demand predictions of concrete-filled steel box columns[J]. Engineering Structures,2003, 25(2): 337-345.
[71] Katsuyoshi N, Toshiyuki K, Hiroshi N. Experimental study on ultimate strength and ductility of concrete-filled steel columns under strong earthquake[J]. Journal of Constructional Steel Research, 1999, 51(3):297-319.
[72] Marson J, Bruneau M. Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail[J]. Journal of Bridge Engineeering, 2004, 9(1):14-23.
[73] Bruneau M, Marson J. Seismic design of concrete-filled circular steel bridge piers[J]. Journal of Bridge Engineering, 2004, 9(1):24-34.
[74] Xiao Y, Zhang Z, Hu J, et al. Seismic behavior of CFT column and steel pile footings[J]. Journal of Bridge Engineering, 2011, 16(5):575-586.
[75] 李宏男.结构多维抗震理论[M]. 北京:科学出版社,2006.
[76] 李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用 [M].北京:科学出版社,2001.
[77] Kobayashi K. Study on the restoring force characteristics of RC column to bi-directional deflection history[C]//Proceedings of the 8th WCEE. San Francisco,USA, 1984:537-544.
[78] Bousias S N, Guido V,Fardis N, et al. Load-path effects in column biaxial bending with axial force[J]. Journal of Mechanics Engineering, 1995, 121(5):596-605.
[79] Hong H P. Strength of slender reinforced concrete columns under biaxial bending[J]. Journal of Structural Engineering, 2001, 127(7):758-762.
[80] Solberg K, Mashiko N, Mander J B, et al. Performance of a damage-protected highway bridge pier subjected to bidirectional earthquake attack[J]. Journal of Structural Engineering, 2009, 135(5):469-478.
[81] Chang S Y.Experimental studies of reinforced concrete bridge columns under axial load plus biaxial bending[J].Journal of Structural Engineering, 2010, 136(1):12-25.
[82] Amar K, Bruno M, Robert T. Cyclic testing of large-scale rectangular bridge columns under bidirectional earthquake components[J]. Journal of Bridge Engineering, 2011, 16(3):351-363.
[83] Dhakal R P, Mander J B, Mashiko N. Bidirectional pseudodynamic tests of bridge piers designed to different standards[J]. Journal of Bridge Engineeering, 2007, 12(3):284-295.
[84] Yoshiaki G, Masayuki M, Makoto O. Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations[J]. Journal of Structural Engineering, 2009, 135(12): 1481-1490.
[85] Yoshiaki G, Ghosh P K, Naoki K. Nonlinear finite-element analysis for hysteretic behavior of thin-walled circular steel columns with in-filled concrete[J]. Journal of Structural Engineering, 2010, 136(11):1413-1422.
[86] Zaghi A E, Saiidi M S, Saad E A. Shake table studies of a concrete bridge pier utilizing pipe-pin two-way hinges [J]. Journal of Bridge Engineeering, 2011, 16(5): 587-596.
[87] Zaghi A E, Saiidi M S,Amir M. Shake table response and analysis of a concrete-filled FRP tube bridge column[J]. Composite Structures, 2012, 94(5):1564-1574.
[88] Amy F,Jamshid M. Performance-based design approach in seismic analysis of bridges[J]. Journal of Bridge Engineering, 2001, 6(1):37-45.
[89] Berry M, Marc E. Performance models for flexural damage in reinforced concrete columns, Report No. PEER-2003/18[R]. Washington DC: Department of Civil & Environmental Engineering of University of Washington, 2003.
[90] Berry M,Myles P,Marc E. PEER structural performance database user’s manual[R]. Berkeley,USA:Pacific Earthquake Engineering Research Center of University of California,Berkeley, 2004.
[91] 夏修身,王常峰. 混凝土桥墩基于性能的抗震设计研究[J]. 西安建筑科技大学学报:自然科学报,2010,42(2): 294-299.
  Xia Xiushen, Wang Changfeng. Performance-based aseismic design for RC bridge piers[J]. Journal of Xian University of Architecture & Technology:Natural Science Edition, 2010, 42(2): 294-299.(in Chinese)
[92] 陆本燕,刘伯权,刘鸣,等. 钢筋混凝土桥墩性能指标量化研究[J]. 公路学报,2010, 23(6): 49-57.
  Lu Benyan, Liu Boquan, Liu Ming, et al. Quantitative research on reinforced concrete performance index of reinforced concrete bridge column[J]. China Journal of Highway and Transport, 2010, 23(6): 49-57.(in Chinese)
[93] Kowalsky M J,Priestley M J N, Maerae G A. Displacement-based design of RC bridge column in seismic regions[J]. Earthquake Engineering and Structural Dynamics,1995, 24(12):1623-1643.
[94] Kowalsky M J. A displacement-based approach for the seismic design of continuous concrete bridges[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3):719-747.
[95] 黄建文,朱晞. 近场地震作用下钢筋混凝土桥墩基于位移的抗震设计[J]. 土木工程学报,2005,38(4):84-90.
  Huang Jianwen, Zhu Xi. Displacement-based seismic design for RC bridge columns under near-fault earthquakes[J]. China Civil Engineering Journal, 2005, 38(4):84-90.(in Chinese)
[96] 朱晞,江辉. 桥梁墩柱基于性能的抗震设计方法[J]. 土木工程学报,2009,42(4):85-92.
  Zhu Xi, Jiang Hui. Performance based seismic design method for RC bridge piers[J]. China Civil Engineering Journal, 2009, 42(4):85-92.(in Chinese)
[97] 李宇,朱晞,杨庆山. 多振型效应对铁路高柔桥墩弹塑性地震响应的影响[J]. 铁道学报,2011,33(11):99-105.
  Li Yu, Zhu Xi, Yang Qingshan. Effects of multiple-mode vibration on elastic-plastic seismic responses of high flexible piers of railway bridge[J]. Journal of the China Railway Society, 2011, 33(11):99-105.(in Chinese)
[98] Zhong J, Paolo G, David R, et al. Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with two-column bents[J]. Journal of Engineering Mechanics, 2008, 134(6):495-504.
[99] Huang Q, Paolo G, Stefan H. Probabilistic seismic demand models and fragility estimates for reinforced concrete highway bridges with one single-column bent[J]. ASCE Journal of Engineering Mechanics, 2010, 136(11):1340-1353.
[100] Ramesh K,Paolo G. Modeling structural degradation of RC bridge columns subject to earthquakes and their fragility estimates[J]. Journal of Structural Engineering, 2012, 138(1):42-51.
[101] 邹中权. 桥梁结构抗震性能概率性分析方法研究[D]. 长沙:中南大学土木工程学院,2010.

备注/Memo

备注/Memo:
作者简介: 宗周红(1966—),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2011BAK02B03)、教育部博士点基金资助项目(20110092110011).
引文格式: 宗周红,夏坚,徐绰然.桥梁高墩抗震研究现状及展望[J].东南大学学报:自然科学版,2013,43(2):445-452. [doi:10.3969/j.issn.1001-0505.2013.02.040]
更新日期/Last Update: 2013-03-20