[1]徐晓明,何仁.高速行驶时电动汽车动力舱自然进风散热分析[J].东南大学学报(自然科学版),2013,43(3):520-524.[doi:10.3969/j.issn.1001-0505.2013.03.014]
 Xu Xiaoming,He Ren.Analysis of heat dissipation by natural wind in power cabin of electric vehicle at high speed[J].Journal of Southeast University (Natural Science Edition),2013,43(3):520-524.[doi:10.3969/j.issn.1001-0505.2013.03.014]
点击复制

高速行驶时电动汽车动力舱自然进风散热分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第3期
页码:
520-524
栏目:
交通运输工程
出版日期:
2013-05-20

文章信息/Info

Title:
Analysis of heat dissipation by natural wind in power cabin of electric vehicle at high speed
作者:
徐晓明何仁
江苏大学汽车与交通工程学院, 镇江 212013
Author(s):
Xu Xiaoming He Ren
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
关键词:
电动汽车 高速行驶 环境温度 电池组位置 散热性能 充放电倍率
Keywords:
electric vehicle high speed environmental temperature battery pack position heat dissipation performance charge and discharge rate
分类号:
U461
DOI:
10.3969/j.issn.1001-0505.2013.03.014
摘要:
采用GAMBIT软件作为前置处理器,FLUENT软件作为计算和后处理软件,对高速行驶时电动汽车动力舱自然进风散热性能进行研究. 结果表明:电动汽车动力舱自然进风散热性能随着车速提高而改善,电池组最高温升随车速提高而降低的幅度比内部最大温差随车速提高而降低的幅度大,表明高速气流更有利于电池组内部温度降低;电动汽车动力舱自然进风散热性能随着环境温度升高和充放电倍率降低而提高,这是因为这2种工况可以有效降低电池发热功率;随着电池组与动力舱后壁距离增加,电动汽车气动性能先改善,再变差.上述结论为高速行驶时电动汽车动力舱自然进风散热分析和电池组位置选择提供了参考依据.
Abstract:
In order to research the natural wind cooling performance of electric vehicle power cabin at high speed, software GAMBIT is used as pre-processor and software FLUENT as calculator and post-processor. The results show that the heat dissipation performance of the electric vehicle power cabin improves with the increase in speed, and the maximum temperature rising of the battery pack decreases more obviously than the maximum temperature difference, which means that the high speed airflow is more beneficial to decrease the internal temperature of the battery pack. The heat dissipation performance of the electric vehicle power cabin improves with the increase in environmental temperature and the decrease in the charge and discharge rate, because these two conditions can effectively reduce the thermal power of the battery pack. When the distance between the battery pack and the rear wall of the power cabin increases, the heat dissipation performance of electric vehicle power cabin improves first and then gets poor. The conclusions provide a reference basis for the natural wind cooling analysis of electric vehicle power cabin and the choice of battery position.

参考文献/References:

[1] 潘宏斌,赵家宏,冯夏至,等.仿真分析技术在镍氢电池模组结构优化设计中的应用[J].机械工程学报,2005,41(12):58-61.
  Pan Hongbin, Zhao Jiahong, Feng Xiazhi, et al. Use of simulation technology on the construction design of nickel hydride metal piles[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12): 58-61.(in Chinese)
[2] Imdat T. An experimental study of energy balance in low heat rejection diesel engine[J]. Elsevier Paper: Energy, 2006, 31(2): 364-371.
[3] Li H, Wang W Y, Su S F. A merged fuzzy neural network and its applications in battery state-of-charge estimation[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 697-708.
[4] 高青,钱妍,戈非.汽车动力舱多热力系统模型分析方法[J].汽车工程学报学报,2012,2(1):8-15.
  Gao Qing, Qian Yan, Ge Fei. Methodology for thermal analysis of multi-system in engine underhood[J]. Automobile Research and Development, 2012, 2(1): 8-15.(in Chinese)
[5] 徐晓明,赵又群.造型和离地间隙对轿车气动性能影响的研究[J].航空动力学报,2009,24(2):292-295.
  Xu Xiaoming, Zhao Youqun.Effect of models and ground clearance on aerodynamic characteristics of car[J]. Journal of Aerospace Power, 2009, 24(2):292-295.(in Chinese)
[6] Somogye R. An aging model of Ni-MH batteries for use in hybrid electric vehicles[D]. Columbus, Ohio, USA: The Ohio State University, 2004.
[7] Anders J. On the thermodynamics development of the new Volvo XC90 using FLUENT[C]//The 1st European Automotive CFD Conference. Tübingen, Germany, 2003: 37-50.
[8] 袁侠义,谷正气,杨易,等.汽车发动机舱散热的数值仿真研究[J].汽车工程,2009,31(9):843-847.
  Yuan Xiayi, Gu Zhengqi, Yang Yi, et al. Numerical simulation on vehicle underhood cooling[J]. Automotive Engineering, 2009,31(9):843-847.(in Chinese)
[9] Kim K B, Choi K W, Lee K S. Active coolant control strategies in automotive engines[J]. International Journal of Automotive Technology, 2010, 11(6): 767-772.
[10] 徐晓明,赵又群.微型纯电动汽车动力舱风冷散热研究[J].航空动力学报,2012,27(7):1532-1536.
  Xu Xiaoming, Zhao Youqun.Research in wind cooling disperse heat of micro electric vehicle power cabin [J]. Journal of Aerospace Power, 2012, 27(7):1532-1536.(in Chinese)

相似文献/References:

[1]金贤建,殷国栋,陈南,等.分布式驱动电动汽车的平方根容积卡尔曼滤波状态观测[J].东南大学学报(自然科学版),2016,46(5):992.[doi:10.3969/j.issn.1001-0505.2016.05.016]
 Jin Xianjian,Yin Guodong,Chen Nan,et al.State observation of distributed drive electric vehicle using square root cubature Kalman filter[J].Journal of Southeast University (Natural Science Edition),2016,46(3):992.[doi:10.3969/j.issn.1001-0505.2016.05.016]

备注/Memo

备注/Memo:
作者简介: 徐晓明(1982—),男,博士,讲师,xuxiaoming3777@163.com.
基金项目: 江苏省科技成果转化项目(BA2010050)、江苏大学高级人才专项资助项目.
引文格式: 徐晓明,何仁.高速行驶时电动汽车动力舱自然进风散热分析[J].东南大学学报:自然科学版,2013,43(3):520-524. [doi:10.3969/j.issn.1001-0505.2013.03.014]
更新日期/Last Update: 2013-05-20