[1]赵亮,张军,钟辉,等.甲醛超临界水气化动力学模型[J].东南大学学报(自然科学版),2013,43(3):542-547.[doi:10.3969/j.issn.1001-0505.2013.03.018]
 Zhao Liang,Zhang Jun,Zhong Hui,et al.Kinetic model for formaldehyde supercritical water gasification[J].Journal of Southeast University (Natural Science Edition),2013,43(3):542-547.[doi:10.3969/j.issn.1001-0505.2013.03.018]
点击复制

甲醛超临界水气化动力学模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第3期
页码:
542-547
栏目:
能源与动力工程
出版日期:
2013-05-20

文章信息/Info

Title:
Kinetic model for formaldehyde supercritical water gasification
作者:
赵亮张军钟辉丁启忠陈孝武徐成威任宗党
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Zhao Liang Zhang Jun Zhong Hui Ding Qizhong Chen Xiaowu Xu Chengwei Ren Zongdang
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
甲醛 超临界水 气化 动力学模型
Keywords:
formaldehyde supercritical water gasification kinetic model
分类号:
TK6
DOI:
10.3969/j.issn.1001-0505.2013.03.018
摘要:
为了进一步揭示甲醛超临界水气化的转化机理,了解各中间产物转化关系,建立了相关的动力学模型.采用该动力学模型对甲醛超临界水降解产物的生成进行了预测.结果表明:在甲醛降解过程中,氢气主要通过甲醛直接分解、甲酸脱羧以及甲醇脱氢反应生成;一氧化碳主要通过甲醛直接分解反应生成;二氧化碳主要通过负氢离子转移以及甲酸脱羧反应生成;Cannizzaro以及负氢离子转移反应是甲醛、甲酸和甲醇生成或消耗的主要路径;通过甲醇脱氢及酯化反应生成了较为明显的甲酸甲酯;少量甲缩醛通过醇醛缩合反应生成.此外,在达到化学平衡状态下,当[HCHO]0<2 mol/L时,随着甲醛初始浓度的增加,氢气和二氧化碳含量逐渐升高,一氧化碳含量和气体产物高位发热量明显降低;当[HCHO]0>2 mol/L时,随着甲醛初始浓度的增加,气体含量及发热量变化很小.
Abstract:
In order to further reveal the reaction mechanism of HCHO decomposition and the conversion process of intermediates in supercritical water, studies on HCHO supercritical water gasification by the kinetic model were carried out. The results show that this kinetic model predicts the products well. From the further studies, it can be seen that H2 is generated by HCHO direct decomposition, HCOOH decarboxylation, and CH3OH dehydrogenation; CO is generated by HCHO direct decomposition, and CO2 is generated by hydride transfer and HCOOH decarboxylation. Cannizzaro and hydride transfer facilitate the generation and consumption of HCHO, HCOOH and CH3OH. CH3OOCH is generated by CH3OH dehydrogenation and esterification. And low concentration of CH2(OCH3)2 is generated by aldol condensation. Besides, when chemical equilibrium is achieved with this kinetic model, it can be found that with the increasing of initial HCHO concentration, H2 and CO2 fractions gradually rise, CO fraction and gross calorific value obviously drop when [HCHO]0<2 mol/L, while gas product fractions and gross calorific value change very little when [HCHO]0>2 mol/L.

参考文献/References:

[1] 张国妮, 张军, 徐益谦. 超临界水中甲醛气化的实验研究[J]. 西安交通大学学报, 2008, 42(3): 372-376.
  Zhang Guoni, Zhang Jun, Xu Yiqian. Experimental research on formaldehyde gasification in supercritical water[J]. Journal of Xian Jiaotong University, 2008, 42(3): 372-376.(in Chinese)
[2] Demirbas A. Hydrogen production from biomass via supercritical water gasification[J]. Energy Sources Part A:Recovery Utilization and Environmental Effects, 2010, 32(14): 1342-1354.
[3] Resende F L P, Neff M E, Savage P E. Noncatalytic gasification of cellulose in supercritical water[J]. Energy & Fuels, 2007, 21(6): 3637-3643.
[4] Kruse A, Bernolie P, Dahmen N, et al. Hydrothermal gasification of biomass: consecutive reactions to long-living intermediates[J]. Energy & Environmental Science, 2010, 3(1): 136-143.
[5] Aida T M, Shiraishi N, Kubo M, et al. Reaction kinetics of D-xylose in sub-and supercritical water[J]. Journal of Supercritical Fluids, 2010, 55(1): 208-216.
[6] Watanabe M, Osada M, Inomata H, et al. Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K[J]. Applied Catalysis A:General, 2003, 245(2): 333-341.
[7] Osada M, Watanabe M, Sue K, et al. Water density dependence of formaldehyde reaction in supercritical water[J]. Journal of Supercritical Fluids, 2004, 28(2): 219-224.
[8] Ohno K, Maeda K. Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal-substituted analogues[J]. The Journal of Physical Chemistry A, 2006, 110(28): 8933-8941.
[9] 张永春, 张军, 赵亮, 等. 超临界水中甲酸降解过程实验研究[J]. 燃料化学学报, 2010, 38(4): 403-408.
  Zhang Yongchun, Zhang Jun, Zhao Liang, et al. Decomposition of formic acid in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 403-408.(in Chinese)
[10] Resende F L P. Supercritical water gasification of biomass[D]. Michigan, USA: University of Michigan, 2009: 117-153.
[11] 王毅. 水煤浆加压气化合成氨装置CO变换反应设计[J]. 煤化工, 2010(6): 28-31.
  Wang Yi. On CO shift reaction and design for typical coal water slurry pressurized gasification[J]. Coal Chemical Industry, 2010(6): 28-31.(in Chinese)
[12] Bühler W, Dinjus E, Ederer H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water[J]. Journal of Supercritical Fluids, 2002, 22(1): 37-53.

备注/Memo

备注/Memo:
作者简介: 赵亮(1986—),男,博士生;张军(联系人),男,博士,教授,博士生导师, junzhang@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2009CB220007)、动力工程多相流国家重点实验室开放基金资助项目.
引文格式: 赵亮,张军,钟辉,等.甲醛超临界水气化动力学模型[J].东南大学学报:自然科学版,2013,43(3):542-547. [doi:10.3969/j.issn.1001-0505.2013.03.018]
更新日期/Last Update: 2013-05-20