[1]陈惠超,赵长遂.白云石煅烧/加压碳酸化循环捕获CO2实验研究[J].东南大学学报(自然科学版),2013,43(3):553-558.[doi:10.3969/j.issn.1001-0505.2013.03.020]
 Chen Huichao,Zhao Changsui.Experimental study on CO2 capture performance of dolomite during atmospheric calcination/pressurized carbonation looping[J].Journal of Southeast University (Natural Science Edition),2013,43(3):553-558.[doi:10.3969/j.issn.1001-0505.2013.03.020]
点击复制

白云石煅烧/加压碳酸化循环捕获CO2实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第3期
页码:
553-558
栏目:
化学化工
出版日期:
2013-05-20

文章信息/Info

Title:
Experimental study on CO2 capture performance of dolomite during atmospheric calcination/pressurized carbonation looping
作者:
陈惠超赵长遂
东南大学能源与环境学院, 南京 210096; 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Chen Huichao Zhao Changsui
School of Energy and Environment, Southeast University, Nanjing 210096, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
白云石 煅烧 加压碳酸化 CO2捕获
Keywords:
dolomite calcination pressurized carbonation CO2 capture
分类号:
TQ028
DOI:
10.3969/j.issn.1001-0505.2013.03.020
摘要:
在双固定床反应器系统上采用提高碳酸化反应压力的方法来改善白云石的CO2循环捕获性能.对白云石在不同碳酸化反应压力、温度、碳酸化气氛与煅烧气氛中CO2浓度以及颗粒粒径等条件下的循环碳酸化特性进行测试,并与石灰石的循环特性进行比较.结果表明,提高碳酸化反应压力有利于提高白云石的循环碳酸化转化率.反应压力一定,白云石的碳酸化转化率随碳酸化温度的增加呈先增加后减小的趋势.在700~750℃和0.5 MPa条件下,白云石获得较高的碳酸化转化率.白云石的加压循环碳酸化反应对一定的粒径范围和煅烧气氛具有较好的适应性.白云石的加压循环碳酸化性能较石灰石优越.
Abstract:
The CO2 capture performance of dolomite is investigated under pressurized carbonation in the dual-fixed bed system. Effects of carbonation pressure, carbonation temperature, CO2 concentration in carbonation and calcination atmosphere, and particle size on cyclic carbonation properties of dolomites are studied. A comparison is made between dolomite and limestone in cyclic carbonation properties. The results show that pressure elevation enhances carbonation conversion of dolomites. At a certain pressure, the carbonation conversion increases and then decreases with the increase of carbonation temperature. The highest CO2 capture capacity is achieved at 700 to 750 oC and 0.5 MPa. The dolomite demonstrates an adaptation to particle sizes and calcination atmosphere under pressurized carbonation. The dolomite exhibits better CO2 capture performance than the limestone at the same condition.

参考文献/References:

[1] Abanades J C, Rubin E S, Anthony E J. Sorbent cost and performance in CO2 capture systems [J]. Industrial and Engineering Chemistry Research, 2004, 43(13): 3462-3466.
[2] Koppatz S, Pfeifer C, Rauch R, et al. H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input [J]. Fuel Processing Technology, 2009, 90(7/8): 914-921.
[3] Weimer T, Berger R, Hawthorne C, et al. Lime enhanced gasification of solid fuels: examination of a process for simultaneous hydrogen production and CO2 capture [J]. Fuel, 2008, 87(8/9): 1678-1686.
[4] Mess D, Sarofim A F, Longwell J P. Product layer diffusion during the reaction of calcium oxide with carbon dioxide [J]. Energy and Fuels, 1999, 13(5): 999-1005.
[5] Abanades J C, Alvarez D. Conversion limits in the reaction of CO2 with lime [J]. Energy and Fuels, 2003, 17(2): 308-315.
[6] Roesch A, Reddy E P, Smirniotis P G. Parametric study of Cs/CaO sorbents with respect to simulated flue gas at high temperature [J]. Industrial and Engineering Chemistry Research, 2005, 44(16): 6458-6490.
[7] Li Y J, Zhao C S, Chen H C, et al. Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent [J]. Fuel, 2010, 89(3):642-649.
[8] Hughes R W, Lu D, Anthony E J, et al. Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor [J]. Industrial and Engineering Chemistry Research, 2004, 43(18): 5529-5539.
[9] Manovic V, Anthony E J. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles [J]. Environmental Science and Technology, 2007, 41(5): 1420-1425.
[10] Sun P, Grace J R, Lim C J, et al. Investigation of attempt to improve cyclic CO2 capture by sorbents hydration and modification [J]. Industrial and Engneering Chemistry Research, 2008, 47(6): 2024-2032.
[11] Chen H C, Zhao C S, Duan L B, et al. Enhancement of reactivity in surfactant-modified sorbent for CO2 capture in pressurized carbonation [J]. Fuel Processing Technology, 2011, 92(3): 493-499.
[12] Lu H, Smirniotis P G. Calcium oxide doped sorbents for CO2 uptake in the presence of SO2 at high temperatures [J]. Industrial Engineering Chemical Research, 2009, 48(11): 5454-5459.
[13] Grasa G S, Abanades J C, Alonso M, et al. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop [J]. Chemical Engineering Journal, 2008, 137(3): 561-567.
[14] Oakeson W G, Cutler I B. Effect of CO2 pressure on the reaction with CaO [J]. Journal of the American Ceramic Society, 1979, 62(11/12): 556-558.
[15] Sun P, Grace J R, Lim C J, et al. Determination of intrinsic rate constants of the CaO-CO2 reaction [J]. Chemical Engineering Science, 2008, 63(1): 47-56.
[16] Baker E H. The calcium oxide-carbon dioxide system in the pressure range 1-300 atmospheres [J]. Journal of Chemical Society, 1962, 70: 464-470.
[17] 塞克利. 气-固反应 [M]. 北京: 中国建筑工业出版社, 1986.
[18] 崔国文. 缺陷、扩散与烧结 [M]. 北京: 清华大学出版社, 1990.
[19] Adanez J, Diego L F, Garcia-Labiano F. Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere [J]. Fuel, 1999, 78(5): 583-592.

相似文献/References:

[1]陈传敏,赵长遂,赵毅.XRD研究O2/CO2气氛下石灰石煅烧产物烧结特性[J].东南大学学报(自然科学版),2008,38(1):97.[doi:10.3969/j.issn.1001-0505.2008.01.019]
 Chen Chuanmin,Zhao Changsui,Zhao Yi.XRD study on sintering characteristics of calcined limestone under O2/CO2 atmosphere[J].Journal of Southeast University (Natural Science Edition),2008,38(3):97.[doi:10.3969/j.issn.1001-0505.2008.01.019]

备注/Memo

备注/Memo:
作者简介: 陈惠超(1981—),女,博士, 讲师,hcchen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51206024)、中国博士后科学基金资助项目(2011M500837)、中国博士后科学基金特别资助项目(2012T50455).
引文格式: 陈惠超,赵长遂.白云石煅烧/加压碳酸化循环捕获CO2实验研究[J].东南大学学报:自然科学版,2013,43(3):553-558. [doi:10.3969/j.issn.1001-0505.2013.03.020]
更新日期/Last Update: 2013-05-20