[1]陈德鹏.基于多物理场耦合的混凝土湿热变形数值模拟[J].东南大学学报(自然科学版),2013,43(3):582-587.[doi:10.3969/j.issn.1001-0505.2013.03.025]
 Chen Depeng.Multi-physical field coupling simulation of hygro-thermal deformation of concrete[J].Journal of Southeast University (Natural Science Edition),2013,43(3):582-587.[doi:10.3969/j.issn.1001-0505.2013.03.025]
点击复制

基于多物理场耦合的混凝土湿热变形数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第3期
页码:
582-587
栏目:
材料科学与工程
出版日期:
2013-05-20

文章信息/Info

Title:
Multi-physical field coupling simulation of hygro-thermal deformation of concrete
作者:
陈德鹏
安徽工业大学建筑工程学院, 马鞍山 243002; 江苏省建筑科学研究院有限公司高性能土木工程材料国家重点实验室, 南京 210008
Author(s):
Chen Depeng
School of Civil Engineering, Anhui University of Technology, Maanshan 243002, China
State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Academy of Building Science Co., Ltd, Nanjing 210008, China
关键词:
多物理场 混凝土 湿热变形 多孔介质 数值模拟
Keywords:
multi-physical field concrete hygro-thermal deformation porous medium numerical simulation
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2013.03.025
摘要:
为研究混凝土湿热耦合变形,基于混凝土微观组成结构特点,根据多物理场耦合作用和多孔介质湿热传输原理,建立了混凝土湿-热-力多物理场模型.并利用COMSOL数值仿真软件和提出的混凝土湿膨胀系数,在人机交互环境下,实现湿-热-力耦合数值求解.首先以Hundt试验为算例,验证了耦合模型和求解方法的可行性,然后利用该方法对某隧道混凝土湿热耦合变形进行了模拟计算.将多物理场耦合数值模拟结果与解析-有限元结合解法计算结果和现场光纤光栅监测结果对比表明,基于多物理场耦合的混凝土湿热耦合变形数值模拟更接近监测结果,更能反映实际物理过程且具备更好的通用性.
Abstract:
Based on the microstructure of concrete, a hygro-thermo-mechanical model is established to investigate the hygro-thermal deformation of concrete according to the coupling effect of multi-physical field and the transfer mechanism of moisture and heat in porous medium. The COMSOL software is used to solve the hygro-thermo-mechanical coupling question in an interactive environment with the help of the presented moisture expansion coefficient of concrete. The feasibility of the model and the solution method is validated by Hundts experimental results. And the hygro-thermal deformation of a lake tunnel is also numerically simulated by COMSOL. The result of COMSOL multi-physical numerical simulation, the numerical result of hybrid analytic-finite element method(A-FEM)method and the fiber Bragg grating(FBG)monitoring data are comparatively analyzed. It is revealed that the COMSOL simulation result is more close to the field test data than that of the A-FEM method. It can be concluded that the COMSOL simulation is more adequate to reveal the physical progress of concrete deformation with better feasibility.

参考文献/References:

[1] Shoukry S N, William G W, Downie B, et al. Effect of moisture and temperature on the mechanical properties of concrete[J]. Construction and Building Materials, 2011, 25(2): 688-696.
[2] 陈德鹏. 基于多孔介质湿热传输理论的混凝土湿热耦合变形数值模拟及应用[D]. 南京: 东南大学材料科学与工程学院, 2007.
[3] Mehta P K. Durability—critical issues for the future[J]. Concrete International, 1997, 19(7): 27-32.
[4] Hossain K M A, Lachemi M. Strength, durability and micro-structural aspects of high performance volcanic ash concrete[J]. Cement and Concrete Research, 2007, 37(5): 759-766.
[5] De Borst R. Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities[J]. Computational Materials Science, 2008, 43(1): 1-15.
[6] Bazant Z P, Yu Q, Li G H, et al. Modeling of creep and hygrothermal deformations of concrete: intriguing consequences of nano-porosity[C]//The Fourth Biot Conference on Poromechanics. Columbia, USA, 2009: 3-16.
[7] Tariku F, Kumaran K, Fazio P. Transient model for coupled heat, air and moisture transfer through multilayered porous media[J]. International Journal of Heat and Mass Transfer, 2011, 53(15/16): 3035-3044.
[8] Sykora J, Sejnoha M, Sejnoha J. Homogenization of coupled heat and moisture transport in masonry structures including interfaces[J]. Applied Mathematics and Computation, 2013, 219(13): 7275-7285.
[9] Jensen O M, Hansen P F. Autogenous deformation and RH-change in perspective[J]. Cement and Concrete Research, 2001, 31(12): 1859-1865.
[10] Chang W J, Weng C I. Analytical solution to coupled heat and moisture diffusion transfer in porous materials[J]. International Journal of Heat and Mass Transfer, 2000, 43(19): 3621-3632.
[11] Chen D, Qian C, Liu C. A numerical simulation approach to calculating hygrothermal deformation of concrete based on heat and moisture transfer in porous medium[J]. International Journal of Civil Engineering, 2010, 8(4): 287-296.
[12] CnTech. COMSOL Multiphysics全球第一款真正的多物理场耦合分析软件 [EB/OL].(2008-09-05)[2012-02-01]. http://www.cntech.com.cn/newsflash/2008/comsol.html.
[13] 盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,25(S1): 3028-3033.
  Sheng Jinchang. Fully coupled thermo-hydro-mechanical model of saturated porous media and numerical modelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1):3028-3033.(in Chinese)
[14] Hundt J. Wärme-und feuchtigkeit leitung in beton unter einwirkung eines temperaturfälles, technical report 256 [R].Berlin: Deutscher Ausschuß für Stahlbeton, 1975.
[15] 陈德鹏, 钱春香, 王辉, 等. 水泥基材料比热容测定及计算方法的研究[J]. 建筑材料学报, 2007, 10(2): 127-131.
  Chen Depeng, Qian Chunxiang, Wang Hui, et al. Research on determination and calculation method of specific heat capacity of cement-based materials [J]. Journal of Building Materials, 2007, 10(2): 127-131.(in Chinese)

相似文献/References:

[1]王毅,叶见曙.温度梯度对混凝土曲线箱梁影响的计算方法[J].东南大学学报(自然科学版),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
 Wang Yi,Ye Jianshu.Computing method of effect of thermal gradient on concrete curved box-girders[J].Journal of Southeast University (Natural Science Edition),2005,35(3):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
[2]孙巍巍,孟少平.后张无粘结预应力装配混凝土联肢抗震墙的连梁组合体抗侧性能[J].东南大学学报(自然科学版),2007,37(2):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
 Sun Weiwei,Meng Shaoping.Lateral load behavior of unbonded post-tensioned coupled concrete wall subassemblages[J].Journal of Southeast University (Natural Science Edition),2007,37(3):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
[3]潘建伍,曹双寅,何小元,等.散斑干涉在纤维与混凝土粘结面位移场测量中的应用[J].东南大学学报(自然科学版),2003,33(3):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
 Pan Jianwu,Cao Shuangyin,He Xiaoyuan,et al.Application of ESPI in displacement measurement of bond area between FRP and concrete[J].Journal of Southeast University (Natural Science Edition),2003,33(3):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
[4]符冠华,杨毅文,耿小平,等.双预应力混凝土梁桥的研究[J].东南大学学报(自然科学版),2001,31(3):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
 Fu Guanhua,Yang Yiwen,Geng Xiaoping,et al.Research on Bi-Prestressing System of Simply Supported Concrete Girder Bridge[J].Journal of Southeast University (Natural Science Edition),2001,31(3):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
[5]关宇刚,孙伟,缪昌文.冻融疲劳作用下高强混凝土劣化特征点的分析[J].东南大学学报(自然科学版),2001,31(6):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
 Guan Yugang,Sun Wei,Miao Changwen.Analysis of the Characteristic Degradation Points for High Strength Concrete Subjected to Freeze-Thaw Cycles[J].Journal of Southeast University (Natural Science Edition),2001,31(3):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
[6]顾文钧,俞建荣.水泥混凝土与沥青混凝土复合式路面温度梯度分析[J].东南大学学报(自然科学版),1997,27(3):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
 Thermal Gradient Analysis of Cement Concrete and Asphalt Concrete Composite Pavement Gu Wenjun Yu Jianrong[J].Journal of Southeast University (Natural Science Edition),1997,27(3):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
[7]聂彦锋,钱春香.基于RST的混凝土硫酸盐侵蚀评价指标分析及损伤程度预测[J].东南大学学报(自然科学版),2013,43(3):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
 Nie Yanfeng,Qian Chunxiang.Evaluation indices analysis and sulfate attack degree prediction of concrete based on RST[J].Journal of Southeast University (Natural Science Edition),2013,43(3):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
[8]吴佰建,李兆霞,郭力.模拟混凝土破坏过程的微裂纹模型及其应用[J].东南大学学报(自然科学版),2013,43(5):1034.[doi:10.3969/j.issn.1001-0505.2013.05.022]
 Wu Baijian,Li Zhaoxia,Guo Li.Micro-crack model for concrete rupture modeling and its applications[J].Journal of Southeast University (Natural Science Edition),2013,43(3):1034.[doi:10.3969/j.issn.1001-0505.2013.05.022]
[9]张云升,孙伟,陈树东,等.粉煤灰混凝土2D和3D碳化试验[J].东南大学学报(自然科学版),2006,36(4):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
 Zhang Yunsheng,Sun Wei,Chen Shudong,et al.2D and 3D carbonation of fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2006,36(3):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
[10]詹炳根,孙伟,沙建芳,等.碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J].东南大学学报(自然科学版),2006,36(6):956.[doi:10.3969/j.issn.1001-0505.2006.06.017]
 Zhan Binggen,Sun Wei,Sha Jianfang,et al.Chloride diffusion and binding capacity in concrete suffered from ASR[J].Journal of Southeast University (Natural Science Edition),2006,36(3):956.[doi:10.3969/j.issn.1001-0505.2006.06.017]

备注/Memo

备注/Memo:
作者简介: 陈德鹏(1978—),男,博士,副教授,dpchen@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2010CB735801)、国家自然科学基金资助项目(51108002)、安徽省高等学校自然科学基金重点资助项目(KJ2011A049).
引文格式: 陈德鹏.基于多物理场耦合的混凝土湿热变形数值模拟[J].东南大学学报:自然科学版,2013,43(3):582-587. [doi:10.3969/j.issn.1001-0505.2013.03.025]
更新日期/Last Update: 2013-05-20