[1]李红伟,陆键,姜桂艳,等.快速路交通事件检测方法[J].东南大学学报(自然科学版),2013,43(3):649-653.[doi:10.3969/j.issn.1001-0505.2013.03.037]
 Li Hongwei,Lu Jianjohn,Jiang Guiyan,et al.Traffic incident detection algorithm for expressway[J].Journal of Southeast University (Natural Science Edition),2013,43(3):649-653.[doi:10.3969/j.issn.1001-0505.2013.03.037]
点击复制

快速路交通事件检测方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第3期
页码:
649-653
栏目:
交通运输工程
出版日期:
2013-05-20

文章信息/Info

Title:
Traffic incident detection algorithm for expressway
作者:
李红伟1陆键2姜桂艳3马永锋1
1东南大学交通学院, 南京 210096; 2上海交通大学船舶海洋与建筑工程学院, 上海 200240; 3吉林大学交通学院, 长春 130022
Author(s):
Li Hongwei1 Lu Jianjohn2 Jiang Guiyan3 Ma Yongfeng1
1School of Transportation, Southeast University, Nanjing 210096, China
2School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3School of Transportation, Jilin University, Changchun 130022, China
关键词:
交通事件 快速路 环形线圈 纵向时间序列 突变理论 事件检测
Keywords:
traffic incident expressway loop coil longitudinal time series catastrophe theory incident detection
分类号:
U491
DOI:
10.3969/j.issn.1001-0505.2013.03.037
摘要:
为了提出一种适用于任何流量并具有较高检测率和较低误警率的快速路交通事件检测算法,以统计理论、突变理论为基础,设计了事件影响指数检测算法.利用交通量数据,检验纵向时间序列与横向时间序列上流量的波动性和正态拟合性;分析事件数据与非事件数据的差异,得出交通事件数据变化特征.分析结果表明:纵向时间序列的波动性和正态拟合性优于横向时间序列;事件数据具有多模态、不可达、突跳等突变性特征.该算法误警率为0,检测率比经典的California算法高出10%.不同流量下的检测效果对比表明,该算法适用于各种流量,低流量状态下的检测效果更好.
Abstract:
In order to put forward a novel traffic incident detection algorithm for expressway which can apply to any traffic volume with a high detection rate and a low false alarm rate, an incident influence index detection algorithm is designed based on the statistical theory and the catastrophe theory. The stability and normal goodness-of-fit of longitudinal time series and transverse time series are tested using traffic volume data. The characteristics of traffic incident data are obtained by analyzing the difference between incident data and non-incident data. Analysis results show that the stability and normal goodness-of-fit of longitudinal time series are much better than those of transverse time series, and traffic incident data exhibits multi-modal, unreachable, and sudden jump characteristics. Compared with the California algorithm, the false alarm rate of the proposed algorithm is 0, and the detection rate is 10% higher than that of the California algorithm. The comparison of detection results under different volumes shows that the proposed algorithm is suitable for any volumes, and the detection effect under low volume is even better.

参考文献/References:

[1] 唐海雯. 实时监控及时处置为排堵保畅做贡献[J]. 交通与运输, 2006(2):10-11.
[2] 姬杨蓓蓓, 张小宁, 孙立军. 基于贝叶斯决策树的交通事件持续时间预测[J].同济大学学报:自然科学版, 2008, 36(3): 319-324.
  Jiyang Beibei, Zhang Xiaoning, Sun Lijun. Incident duration prediction grounded on Bayesian decision method based tree algorithm[J]. Journal of Tongji University:Natural Science, 2008, 36(3): 319-324.(in Chinese)
[3] Payne H J, Helfenbein E D, Knobel H C. Development and testing of incident detection algorithms[R]. Washington,DC, USA: Federal Highway Administration, 1976.
[4] Abuelela M, Olariu S. Automatic incident detection in VANETs: a Bayesian approach[C]//IEEE Vehicular Technology Conference. Barcelona, Spain, 2009:1-5.
[5] Moynihan G P, Fonseca D J, Brumback T, et al. Design of a decision support system for road incident detection and characterization [C]//Proceedings of the 2009 ASCE International Workshop on Computing in Civil Engineering. Austin, USA, 2009:613-322.
[6] Jeong Y-S, Castro-Neto M, Jeong M K, et al. A wavelet-based freeway incident detection algorithm with adapting threshold parameters[J]. Transportation Research Part C, 2009, 19(1):1-19.
[7] Ritchie S G, Cheu R L. Simulation of freeway incident detection using artificial neural networks[J]. Transportation Research Part C, 1993, 1(3):203-217.
[8] Jian L, Shuyan C, Wei W. A hybrid model of partial least squares and neural network for traffic incident detection [J]. Expert Systems with Applications, 2012, 39(5): 4775-4784.
[9] Subramaniam S. Literature review of incident detection algorithms to initiative diversion strategies[R]. Blacksburg, VA, USA: Virginia Polytechnic Institute, 1991.
[10] 王欣, 李文权, 王炜. 基于驾驶行为共性的回波速度解释及仿真[J]. 东南大学学报:自然科学版, 2007, 37(4): 691-694.
  Wang Xin, Li Wenquan, Wang Wei. Interpreting and emulating echo wave speed based on common characteristics of driving behavior [J]. Journal of Southeast University: Natural Science Edition, 2007, 37(4):691-694.(in Chinese)
[11] 陈雨人, 郑仕文, 童世鑫, 等. 区域高速公路网络交通事件传感器布设方法研究[J]. 公路交通科技, 2010, 27(11): 143-148.
  Chen Yuren, Zheng Shiwen, Tong Shixin, et al. Study on deployment of traffic incident detectors for regional expressway network[J]. Journal of Highway and Transportation Research and Development, 2010, 27(11):143-148.(in Chinese)
[12] Awadallah F. Incident detection:selection of appropriate technologies and methodologies[J]. Road Transport Research, 2002, 11(2):50-56.
[13] Daniel D G, Francisco J, David G O. Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks [J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25(7):530-545.
[14] Stamovlasis D, Tsaparlis G. Applying catastrophe theory to an information-processing model of problem solving in science education [J]. Science Education, 2010, 96(3):392-410.

备注/Memo

备注/Memo:
作者简介: 李红伟(1982—),女,博士生;陆键(联系人),男,博士,教授,博士生导师,jianjohnlu@sina.com.
基金项目: 国家自然科学基金资助项目(51078232).
引文格式: 李红伟,陆键,姜桂艳,等.快速路交通事件检测方法[J].东南大学学报:自然科学版,2013,43(3):649-653. [doi:10.3969/j.issn.1001-0505.2013.03.037]
更新日期/Last Update: 2013-05-20