[1]陈晓乐,钟文琪,孙宝宾,等.人体呼吸道内可吸入颗粒径向平面运动的CFD-DEM模拟[J].东南大学学报(自然科学版),2013,43(4):824-829.[doi:10.3969/j.issn.1001-0505.2013.04.028]
 Chen Xiaole,Zhong Wenqi,Sun Baobin,et al.CFD-DEM simulation of inhalable particle motion in radial plane of human airway[J].Journal of Southeast University (Natural Science Edition),2013,43(4):824-829.[doi:10.3969/j.issn.1001-0505.2013.04.028]
点击复制

人体呼吸道内可吸入颗粒径向平面运动的CFD-DEM模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第4期
页码:
824-829
栏目:
环境科学与工程
出版日期:
2013-07-20

文章信息/Info

Title:
CFD-DEM simulation of inhalable particle motion in radial plane of human airway
作者:
陈晓乐1钟文琪1孙宝宾2金保昇1周献光2
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2东南大学医学院, 南京 210096
Author(s):
Chen Xiaole1 Zhong Wenqi1 Sun Baobin2 Jin Baosheng1 Zhou Xianguang2
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2 Medical School, Southeast University, Nanjing 210096, China
关键词:
可吸入颗粒物 呼吸道 径向位置与速度分布
Keywords:
inhalable particle airway position and radial velocity distribution
分类号:
X503.1
DOI:
10.3969/j.issn.1001-0505.2013.04.028
摘要:
为分析呼吸道内可吸入颗粒物初始位置与输运特性之间的关系,构建了基于Weibel-23级肺结构的G3~G5级呼吸道模型.采用CFD-DEM方法模拟了球形可吸入颗粒物在呼吸道内的径向平面运动,分析了抛物面型速度进口条件下局部呼吸道的气相场速度分布特点和颗粒物在径向平面内分布位置、速度和颗粒物初始位置之间的关系.研究表明,模型入口中部的颗粒物在G4级壁面附近浓度较高,这是G4级呼吸道壁面产生沉积的原因,入口壁面附近的颗粒物主要分布在G4级中央偏分叉外侧分区;入口中部的颗粒物在G5级外侧分支内呼吸道外侧浓度分布较高,入口壁面附近的颗粒物位于呼吸道中部;入口中部的颗粒物在G5级内侧分支中主要分布于壁面附近和涡的边缘,而入口壁面附近颗粒物仅出现在涡的内部.
Abstract:
In order to investigate the relationship between the initial position and transport characteristics of inhalable particle in airway, this paper constructs the generation 3 to 5 airway model based on Weibels 23 generations pulmonary structure. Computational fluid dynamics-discrete element method(CFD-DEM)is adopted to simulate the radial motions of inhalable spherical particles in the airway. The gas phase velocity distribution of local airway under parabolic velocity inlet condition and the relationship between particle position and velocity in radial plane and its initial position are studied. The results show that the particles in the center of inlet have higher concentration near the boundary leading to the deposition on tube wall in generation 4. The particles near the wall of inlet mainly locate in the tube center towards the lateral side in generation 4. The particles in the center of inlet have higher concentration in the lateral side, and the particles near the wall of inlet mostly distribute in the tube center in the lateral branch of generation 5. The particles in the center of inlet generally spread near the boundary and the edge of vortices while the particles near the wall of inlet only distribute in the inside of vortices in the inner branch of generation 5.

参考文献/References:

[1] 中国气象局. 中国气象局2013年4月新闻发布会[EB/OL].(2013-04-03)[2013-04-10]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/fbh/201304/t1307058.htm.
[2] Ostro B D, Hurley S, Lipsett M J. Air pollution and daily mortality in the coachella valley, California: a study of pm10 dominated by coarse particles[J]. Environmental Research, 1999, 81(3): 231-238.
[3] Schwartz J, Norris G, Larson T, et al. Episodes of high coarse particle concentrations are not associated with increased mortality[J]. Environ Health Perspect, 1999, 107(5): 339-342.
[4] 郝捷, 陈万青. 2012中国肿瘤登记年报 [M]. 北京: 军事医学科学出版社, 2012: 15-33.
[5] 曾敏捷, 胡桂林, 樊建人. 微颗粒在人体上呼吸道中运动沉积的数值模拟[J]. 浙江大学学报:工学版, 2006, 40(7):1164-1167, 1256.
  Zeng Minjie, Hu Guilin, Fan Jianren. Numerical simulation of micro-particle movement and deposition in human upper respiratory tract[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(7): 1164-1167, 1256.(in Chinese)
[6] 林江, 胡桂林, 樊建人. 气管支气管树内气流和颗粒运动的大涡模拟[J]. 工程热物理学报, 2007, 28(5):805-807.
  Lin Jiang, Hu Guilin, Fan Jianren. Large eddy simulation of airflow and particle motion in tracheobronchial tree[J]. Journal of Engineering Thermophysics, 2007, 28(5): 805-807.(in Chinese)
[7] 由长福, 李光辉, 祁海鹰,等. 可吸入颗粒物近壁运动的直接数值模拟[J]. 工程热物理学报, 2004, 25(2):265-267.
  You Changfu, Li Guanghui, Qi Haiying, et al. DNS of inhalable particle motion in channel flow[J]. Journal of Engineering Thermophysics, 2004, 25(2): 265-267.(in Chinese)
[8] Luo H Y, Liu Y, Yang X L. Particle deposition in obstructed airways[J]. Journal of Biomechanics, 2007, 40(14): 3096-3104.
[9] Wang S M, Inthavong K, Wen J, et al. Comparison of micron and nanoparticle deposition patterns in a realistic human nasal cavity[J]. Respiratory Physiology & Neurobiology, 2009, 166(3): 142-151.
[10] 赵秀国. 人体上呼吸道内气流运动特性与气溶胶沉积规律的研究[D]. 天津:军事医学科学院卫生装备研究所,2008.
[11] Kleinstreuer C, Zhang Z. Airflow and particle transport in the human respiratory system [J]. Annual Review of Fluid Mechanic, 2010, 42: 301-334.
[12] Ren Bing, Zhong Wengqi, Jin Baosheng, et al. Modeling of gas-particle turbulent flow in spout fluid bed by computational fluid dynamics with discrete element method[J]. Chemical Engineering & Technology, 2011, 34(12): 2059-2068.
[13] Ren Bing, Shao Yingjuan, Zhong Wenqi, et al. Investigation of mixing behaviors in a spouted bed with different density particles using discrete element method [J]. Powder Technology, 2012, 222: 85-94.
[14] Favier J F, Abbaspour-Fard M H, Kremmer M. Modeling nonspherical particles using multisphere discrete elements[J]. Journal of Engineering Mechanics, 2001, 127(10): 971-977.
[15] Vu-Quoc L, Zhang X, Walton O R. A 3-D discrete-element method for dry granular flows of ellipsoidal particles[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3): 483-528.
[16] Abbaspour-Fard M H. Theoretical validation of a multi-sphere, discrete element model suitable for biomaterials handling simulation[J]. Biosystems Engineering, 2004, 88(2): 153-161.
[17] Abou-Chakra H, Baxter J, Tuzun U. Three-dimensional particle shape descriptors for computer simulation of non-spherical particulate assemblies[J]. Advanced Powder Technology, 2004, 15(1): 63-77.
[18] Kodam M, Curtis J, Hancock B, et al. Discrete element method modeling of bi-convex pharmaceutical tablets: contact detection algorithms and validation[J]. Chemical Engineering Science, 2012, 69(1): 587-601.
[19] Chen Xiaole, Zhong Wenqi, Sun Baobin, et al. Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD-DPM approach[J]. Powder Technology, 2012, 217: 252-260.
[20] Zhang Z, Kleinstreuer C, Kim C S. Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways[J]. Journal of Medical Engineering & Technology, 2000, 24(5): 192-202.
[21] Zhang Z, Kleinstreuer C. Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model[J]. Journal of Aerosol Medicine, 2001, 14(1): 13-29.
[22] Zhang Z, Kleinstreuer C, Kim C S. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models[J]. Journal of Biomechanics, 2001, 34(5): 659-669.
[23] Zhang Z, Kleinstreuer C, Kim C S. Gas-solid two-phase flow in a triple bifurcation lung airway model[J]. International Journal of Multiphase Flow, 2002, 28(6): 1021-1046.
[24] Zhang Z, Kleinstreuer C, Kim C S. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model[J]. Journal of Aerosol Science, 2002, 33(2): 257-281.
[25] Li Z, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns[J]. Journal of Aerosol Science, 2007, 38(6): 625-644.
[26] Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. J Fluid Mech, 1972, 55(2): 193-208.
[27] Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces [J]. Journal of Applied Mechanics, 1953, 20(3): 327-344.
[28] Raji A O. Discrete element modelling of the deformation of bulk agricultural particulates [D]. Newcastle upon Tyne, UK: Newcastle University, 1999.
[29] Weibel E R. Morphometry of the human lung [M]. Salt Lake City, USA: Academic Press,1963.
[30] Ning Z. Elasto-plastic impact of fine particles and fragmentation of small agglomerates [D]. Birmingham, UK: Aston University, 1999.
[31] Chen Xiaole, Zhong Wenqi, Zhou Xiaoguang, et al. CFD-DEM simulation of particle transport and deposition in pulmonary airway[J]. Powder Technology, 2012, 228: 309-318.
[32] Comer J K, Kleinstreuer C, Kim C S. Flow structures and particle deposition patterns in double-bifurcation airway models. part 2. Aerosol transport and deposition[J]. Journal of Fluid Mechanics, 2001, 435(1): 55-80.

备注/Memo

备注/Memo:
作者简介: 陈晓乐(1986—),男,博士生;钟文琪(联系人),男,博士,研究员,博士生导师,wqzhong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51176035)、全国优秀博士学位论文资助项目(201040)、江苏省普通高校研究生科研创新计划资助项目(CXZZ12_0099)、东南大学优秀博士学位论文基金资助项目(YBJJ1209).
引文格式: 陈晓乐,钟文琪,孙宝宾,等.人体呼吸道内可吸入颗粒径向平面运动的CFD-DEM模拟[J].东南大学学报:自然科学版,2013,43(4):824-829. [doi:10.3969/j.issn.1001-0505.2013.04.028]
更新日期/Last Update: 2013-07-20