[1]郑佳宜,陈振乾.硅藻土基调湿建筑材料的应用仿真模拟[J].东南大学学报(自然科学版),2013,43(4):840-844.[doi:10.3969/j.issn.1001-0505.2013.04.031]
 Zheng Jiayi,Chen Zhenqian.Application analogue simulation of diatomite-based humidity control building material[J].Journal of Southeast University (Natural Science Edition),2013,43(4):840-844.[doi:10.3969/j.issn.1001-0505.2013.04.031]
点击复制

硅藻土基调湿建筑材料的应用仿真模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第4期
页码:
840-844
栏目:
材料科学与工程
出版日期:
2013-07-20

文章信息/Info

Title:
Application analogue simulation of diatomite-based humidity control building material
作者:
郑佳宜陈振乾
东南大学能源与环境学院, 南京210096
Author(s):
Zheng Jiayi Chen Zhenqian
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
硅藻土 调湿建筑材料 有效湿渗透厚度模型 仿真模拟
Keywords:
diatomite humidity control building material effective moisture penetration depth model analogue simulation
分类号:
TU59
DOI:
10.3969/j.issn.1001-0505.2013.04.031
摘要:
采用有效湿渗透厚度模型,模拟了室外气候条件及室内周期性湿负荷作用下,房间内墙铺设和未铺设硅藻土基调湿建筑材料时,室内空气温度和相对湿度的变化规律.研究结果表明,内墙铺设硅藻土基调湿建筑材料能够减弱室外气象参数波动以及室内周期性湿负荷变化对室内空气温度和相对湿度的影响;硅藻土基调湿建筑材料的铺设能够将室内空气湿度参数控制在较小的范围内,符合人体舒适度要求;硅藻土基调湿建筑材料的铺设存在最佳厚度值0.02 m,铺设厚度应大于等于最佳厚度值.此预测方法对评价建筑材料性能、预测建筑节能程度和指导建筑设计有一定的参考价值和借鉴意义.
Abstract:
Indoor air temperature and relative humidity in a room with and without DBHCBM(diatomite-based humidity control building material)are simulated by using the effective moisture penetration depth model under outdoor climate and indoor periodic moisture load boundary conditions. The results show that DBHCBM can effectively weaken the influence of outdoor climate fluctuation and indoor periodic moisture load change on indoor air temperature and relative humidity. DBHCBM also can control indoor air humidity parameters in a narrow range which can meet peoples comfort requirment. The thickness of DBHCBM should be more than or equal to the optimum thickness(0.02 m). The approach proposed in this paper provides some significant reference for assessing performance of building material, predicting energy-saving level of architecture and guiding the architectural design.

参考文献/References:

[1] 田中西藤宫野.屋内湿度变化对壁体材料[C]//日本建筑学会研究报告:第3集.福罔:秀巧社印刷株式会社,1949:21-25.
  Tanaka Miyano Saito. The variance of humidity in room according to wall materials[C]//Research Report of Architectural Institute of Japan, 3rd version. Fukuoka:Shukosha Printing Co., Ltd., 1949:21-25.(in Japanese)
[2] 冯乃谦, 李桂芝,邢锋. 调湿材料的研究[J]. 新型建筑材料, 1994(6): 16-19.
  Feng Naiqian, Li Guizhi, Xing Feng. Research on humidity control material[J]. New Building Materials, 1994(6): 16-19.(in Chinese)
[3] 王新江,渡村信治. 利用煤系高岭土制备自律型调湿材料的研究[J]. 中国非金属矿工业导刊, 1998(6): 17-19.
[4] 陈作义. 硅藻土复合调湿材料的调湿性能研究[J]. 化工新型材料, 2011, 39(5): 48-49.
  Chen Zuoyi. Experiment on diatomite composite materials as humidity controlling materials[J]. New Chemical Materials, 2011, 39(5): 48-49.(in Chinese)
[5] Talukdar P, Olutmayin S O, Osanyintola O F, et al. An experimental data set for benchmarking 1D, transient heat and moisture transfer models of hygroscopic building materials. Part Ⅰ: experimental facility and material property data[J]. International Journal of Heat and Mass Transfer, 2007, 50(23): 4527-4539.
[6] Zhang H B, Yoshino H, Hasegawa K. Assessing the moisture buffering performance of hygroscopic material by using experimental method[J]. Building and Environment, 2012, 48(1): 27-34.
[7] Svennberg K, Lengsfeld K, Harderup L E, et al. Previous experimental studies and field measurements on moisture buffering by indoor surface materials[J]. Journal of Building Physics, 2007, 30(3): 261-274.
[8] Vu D H, Wang K S, Bac B H. Humidity control porous ceramics prepared from waste and porous materials[J]. Materials Letters, 2011, 65(6): 940-943.
[9] Samson E, Marchand J, Snyder K A, et al. Modeling ion and fluid transport in unsaturated cement systems in isothermal conditions[J]. Cement and Concrete Research, 2005, 35(1): 141-153.
[10] Wang J, Christakis N, Patel M K, et al. A computational model of coupled heat and moisture transfer with phase change granular sugar during varying environmental conditions[J]. Numerical Heat Transfer, Part A: Applications, 2004, 45(8): 751-776.
[11] Talukdar P, Osanyintola O F, Olutmayin S O, et al. An experiment data set for benchmarking 1D, transient heat and moisture transfer models of hygroscopic building materials. PartⅡ: experimental, numerical and analytical data[J]. International Journal of Heat and Mass Transfer, 2007, 50(25): 4915-4926.
[12] Künzel H M, Holm A, Zirkelbach D, et al. Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope[J]. Solar Energy, 2005, 78(4): 554-561.
[13] Abadie M O, Mendonca K C. Moisture performance of building materials: from material characterization to building simulation using the moisture buffer value concept[J]. Building and Environment, 2009, 44(2): 388-401.
[14] Yeh Y C, Tsay Y S, Chiang C M. Study on numerical simulation applied to moisture buffering design method—the case study of pine wood in a single zone residential unit in Taiwan[J]. World Academy of Science, Engineering and Technology, 2012, 67:1324-1330.
[15] Kerestecioglu A, Swami M, Kamel A. Theoretical and computational investigation of simultaneous heat and moisture transfer in buildings: effective penetration depth theory[J]. Ashrae Transactions, 1990, 96(1): 447-454.

备注/Memo

备注/Memo:
作者简介: 郑佳宜(1986—),女,博士生;陈振乾(联系人),男,博士,教授,博士生导师,zqchen@seu.edu.cn.
基金项目: 科技部国际科技合作技术交流专项资助项目(2011DFA60290).
引文格式: 郑佳宜,陈振乾.硅藻土基调湿建筑材料的应用仿真模拟[J].东南大学学报:自然科学版,2013,43(4):840-844. [doi:10.3969/j.issn.1001-0505.2013.04.031]
更新日期/Last Update: 2013-07-20