[1]闵昌万,谭志勇,龙丽平,等.热力氧耦合环境下C/C复合材料的力学性能表征[J].东南大学学报(自然科学版),2013,43(4):845-848.[doi:10.3969/j.issn.1001-0505.2013.04.032]
 Min Changwan,Tan Zhiyong,Long Liping,et al.Mechanical properties characterization of C/C composite subjected to thermo-mechanical-oxygenic coupling environment[J].Journal of Southeast University (Natural Science Edition),2013,43(4):845-848.[doi:10.3969/j.issn.1001-0505.2013.04.032]
点击复制

热力氧耦合环境下C/C复合材料的力学性能表征()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第4期
页码:
845-848
栏目:
其他
出版日期:
2013-07-20

文章信息/Info

Title:
Mechanical properties characterization of C/C composite subjected to thermo-mechanical-oxygenic coupling environment
作者:
闵昌万1谭志勇1龙丽平1费庆国2
1空间物理国家重点试验室, 北京100076; 2东南大学江苏省工程力学分析重点试验室, 南京210096
Author(s):
Min Changwan1 Tan Zhiyong1 Long Liping1 Fei Qingguo2
1State Key Laboratory of Space Physics, Beijing 100076, China
2Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
热力氧耦合 C/C复合材料 力学性能 损伤模式
Keywords:
thermo-mechanical-oxygenic coupling C/C(carbon/carbon)composite mechanical performance damage modes
分类号:
V520.2;V540.3
DOI:
10.3969/j.issn.1001-0505.2013.04.032
摘要:
为了准确表征C/C复合材料在热力氧耦合环境下的力学性能,采用高温试验装置,在不同的预应力与温度条件下对带/不带抗氧化涂层2类典型的C/C复合材料拉伸试验件进行测试.试验结果表明,不同应力水平导致C/C复合材料的损伤可分为扩散控制和反应控制2个阶段.在扩散控制阶段,结构各部分承载的均匀性较好;在反应控制阶段,材料拉伸模量显著下降.当高温下外载荷产生的应变小于等于0.2%时,不带抗氧化涂层C/C复合材料的强度约为带抗氧化涂层C/C复合材料强度的50%.不同温度条件下材料的强度性能变化不显著,但随时间增加,其高温强度逐渐下降.研究结果对于C/C复合材料在飞行环境下的强度设计与评估具有重要的参考价值.
Abstract:
In order to characterize the mechanical properties of C/C(carbon/carbon)composite subjected to thermo-mechanical-oxygenic coupling environment, a high-temperature testing device was employed to test the tensile pieces of two kinds of C/C composite(with and without antioxidant coating)under different temperatures and pre-stresses. The experimental results show that different levels of stress lead to two stages of damaging, diffusion-controlled stage and reaction-controlled stage. In the diffusion-controlled stage, the structural bearing capacity is uniform. In the reaction-controlled stage, the tensile elasticity modulus descends significantly. At elevated temperature, when the strain caused by the external load is no more than 0.2%, and the strength property of C/C composite without antioxidant coating is 50% that of C/C composite with antioxidant coating. The change of strength properties presents less temperature-dependent. But the strength properties at elevated temperature degrade with the time passing by. The results of this study can be applied to the structural strength design and evaluation of C/C composite in flight environment.

参考文献/References:

[1] Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3): 409-420.
[2] 赵卫, 乔玲, 韩晓林, 等. C/C-SiC复合材料的表面烧蚀模型及数值模拟[J]. 东南大学学报:自然科学版, 2011, 41(2): 365-369.
  Zhao Wei, Qiao Ling, Han Xiaolin, et al. Surface ablation model and numerical simulation of C/C-SiC composites[J]. Journal of Southeast University: Natural Science Edition, 2011, 41(2): 365-369.(in Chinese)
[3] Krenkel W, Berndt F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering: A, 2005, 412(1): 177-181.
[4] Qian G F, He J L, Yong J W, et al. Multilayer oxidation protective coating for C/C composites from room temperature to 1 500℃[J]. Surface and Coatings Technology, 2010, 204(11): 1831-1835.
[5] Lin Y C, Ruiz E M, Rateick R G, et al. One-step synthesis of a multi-functional anti-oxidation protective layer on the surface of carbon/carbon composites[J]. Carbon, 2012, 50(2): 557-565.
[6] Chu Y, Fu Q, Li H, et al. SiC coating toughened by SiC nanowires to protect C/C composites against oxidation[J]. Ceramics International, 2012, 38(1): 189-194.
[7] Roth D J, Jacobson N S, Rauser R W, et al. Nondestructive evaluation(NDE)for characterizing oxidation damage in cracked reinforced carbon-carbon[J]. International Journal of Applied Ceramic Technology, 2010, 7(5): 652-661.
[8] Choi S R, Gyekenyesi J P. Load-rate dependency of ultimate tensile strength in ceramic matrix composites at elevated temperatures[J]. International Journal of Fatigue, 2005, 27(5): 503-510.
[9] Choi S R, Bansal N P, Verrilli M J. Delayed failure of ceramic matrix composites in tension at elevated temperatures[J]. Journal of the European Ceramic Society, 2005, 25(9): 1629-1636.
[10] 张立同. 纤维增韧碳化硅陶瓷复合材料——模拟、表征与设计[M]. 北京: 化学工业出版社, 2009: 227-238.
[11] Fujimoto K, Shioya T, Satoh K. Degradation of carbon-based materials due to impact of high-energy atomic oxygen[J]. International Journal of Impact Engineering, 2003, 28(1): 1-11.
[12] Jacobson N S, Curry D M. Oxidation microstructure studies of reinforced carbon/carbon[J]. Carbon, 2006, 44(7): 1142-1150.
[13] Maire J F, Lesne P M. A damage model for ceramic matrix composites[J]. Aerospace Science and Technology, 1997, 1(4): 259-266.
[14] Park S J, Cho M S. Effect of anti-oxidative filler on the interfacial mechanical properties of carbon-carbon composites measured at high temperature[J]. Carbon, 2000, 38(7): 1053-1058.
[15] American Society for Testing and Materials. ASTM-C1359 Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section specimens at elevated temperatures[EB/OL].(2000)[2012-10-20].http://www.astm.org/DATABASE.CART/HISTORICAL/C1359-96R00.htm.

备注/Memo

备注/Memo:
作者简介: 闵昌万(1971—),男,研究员,minchangwan@126.com.
基金项目: 国家自然科学基金资助项目(10902024)、教育部新世纪优秀人才支持计划资助项目(NCET-11-0086)、航空科学基金资助项目(20090869009)、江苏省自然科学基金资助项目(BK2010397).
引文格式: 闵昌万,谭志勇,龙丽平,等.热力氧耦合环境下C/C复合材料的力学性能表征[J].东南大学学报:自然科学版,2013,43(4):845-848. [doi:10.3969/j.issn.1001-0505.2013.04.032]
更新日期/Last Update: 2013-07-20