[1]唐洪祥,管毓辉.孔口应力集中问题的Cosserat连续体有限元分析[J].东南大学学报(自然科学版),2013,43(4):849-855.[doi:10.3969/j.issn.1001-0505.2013.04.033]
 Tang Hongxiang,Guan Yuhui.Finite element analysis of Cosserat continuum for stress concentration of holes[J].Journal of Southeast University (Natural Science Edition),2013,43(4):849-855.[doi:10.3969/j.issn.1001-0505.2013.04.033]
点击复制

孔口应力集中问题的Cosserat连续体有限元分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第4期
页码:
849-855
栏目:
土木工程
出版日期:
2013-07-20

文章信息/Info

Title:
Finite element analysis of Cosserat continuum for stress concentration of holes
作者:
唐洪祥12管毓辉1
1大连理工大学土木工程学院, 大连 116024; 2中国科学院岩土力学国家重点实验室, 武汉 430071
Author(s):
Tang Hongxiang 12 Guan Yuhui 1
1School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
2Key Laboratory of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
关键词:
Cosserat连续体 应力集中 圆孔 椭圆孔 菱形孔 Hu-Washizu混合变分原理 不可压缩材料
Keywords:
Cosserat continuum stress concentration circular hole elliptic hole rhombic hole Hu-Washizu mixed variational principle incompressible mateial
分类号:
TU313.1
DOI:
10.3969/j.issn.1001-0505.2013.04.033
摘要:
采用四边形四节点和四边形八节点2种Cosserat连续体单元对一般平面应变条件下的圆孔、椭圆孔以及菱形孔的应力集中现象进行了数值模拟.结果表明:当孔口变得尖锐时,应力集中因子与应变梯度显著增大;经典的连续体单元可能会过高估计应力集中因子,而Cosserat连续体单元则可以反映孔口的大应变梯度和微结构的影响,从而弱化应力集中因子.为了模拟接近不可压缩或几乎不可压缩材料的孔口应力集中问题,引入了独立的压力场,并基于Hu-Washizu混合变分原理发展了一个四边形四节点单元u4ω4p.数值结果表明,u4ω4p单元与八节点单元能较好地模拟不可压缩材料中的应力集中现象.此外,鉴于其计算工作量小、不易扭曲等优点,u4ω4p具有更广阔的应用前景.
Abstract:
The stress concentration phenomena of circular hole, elliptic hole and rhombic hole under ordinary plane strain condition are numerically simulated by two types of Cosserat continuum finite elements, four nodded displacement-based quadrilateral isoparametric element and eight nodded displacement-based quadrilateral isoparametric element. The numerical results indicate that the stress concentration factor and the strain gradient increase significantly when the corner is sharp. The classical continuum finite element may overestimate the stress concentration factor, while these two Cosserat continuum finite elements can reflect the effects of large strain gradient and micro-structure of the holes and thus weaken the stress concentration factor. To simulate the stress concentration phenomena of incompressible and nearly incompressible materials, an independent pressure variable is introduced and a four nodded quadrilateral element(u4ω4p)based on the Hu-Washizu mixed variational principle is developed. The results show that u4ω4p and the eight nodded quadrilateral element can well simulate the stress concentration phenomena in incompressible materials. Besides, u4ω4p may have more application owing to its less cost and less distortion in computation.

参考文献/References:

[1] 西田正孝. 应力集中 [M]. 李安定,等译.北京: 机械工业出版社, 1986.
[2] 李又村, 程赫明, 周友坤. 仿真在薄板小孔应力集中现象实验中的应用[J]. 昆明冶金高等专科学校学报, 2008, 24(1): 63-68.
  Li Youcun, Cheng Heming, Zhou Youkun. Application of simulation in the experiment of the stress concentration of a plate hole [J]. Journal of Kunming Metallurgy College, 2008, 24(1): 63-68.(in Chinese)
[3] de Borst R. Simulation of srtain localization:a reappraisal of the Cosserat continuum [J]. Engineering Computations, 1991, 8(4): 317-332.
[4] Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization [J]. Computers and Structures, 2005, 83(1): 1-10.
[5] 唐洪祥, 李锡夔. 地基渐进破坏及极限承载力的Cosserat连续体有限元分析[J]. 岩土力学, 2007, 28(11): 2259-2264.
  Tang Hongxiang, Li Xikui. Finite element analysis of Cosserat continuum for progressive failure and limit bearing capacity of soil foundation [J]. Rock and Soil Mechanics, 2007, 28(11): 2259-2264.(in Chinese)
[6] Mindlin R D. Influence of couple-stress on stress concentrations [J]. Experimental Mechanics, 1963, 3(1):1-7.
[7] 刘俊, 黄铭, 葛修润. 考虑偶应力影响的应力集中问题求解[J]. 上海交通大学学报, 2001, 35(10): 1481-1485.
  Liu Jun, Huang Ming, Ge Xiurun. Solution of stress concentration problem considering influence of couple-stress [J]. Journal of Shanghai Jiaotong University, 2001, 35(10): 1481-1485.(in Chinese)
[8] 赵勇, 张若京. 基于Cosserat理论的小孔应力集中问题的有限元分析[J]. 力学季刊, 2009, 30(3): 410-414.
  Zhao Yong, Zhang Ruojing. Finite element analysis of stress concentration problem based on Cosserat theory [J]. Chinese Quarterly of Mechanics, 2009, 30(3): 410-414.(in Chinese)
[9] 张洪武, 王辉. 平面Cosserat模型有限元分析的4和8节点单元与分片试验研究[J]. 计算力学学报, 2005, 22(5): 512-517.
  Zhang Hongwu, Wang Hui. 4- and 8-node isoparametric elements for finite element analysis of plane cosserat bodies [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 512-517.(in Chinese)
[10] Ted Belytschko, Wing Kamliu, Brian Moran. Nonlinear finite elements for continua and structures [M]. London: John Wiley and Sons, 2000.
[11] Steinmann P. Theory and numerics of ductile micropolar elastoplastic damage [J]. International Journal For Numerical Methods in Engineering, 1995, 38(4): 583-606.

相似文献/References:

[1]安琳,欧阳平,郑亚明.锈坑应力集中对钢筋力学性能的影响[J].东南大学学报(自然科学版),2005,35(6):940.[doi:10.3969/j.issn.1001-0505.2005.06.024]
 An Lin,Ouyang Ping,Zheng Yaming.Effect of stress concentration on mechanical properties of corroded reinforcing steel bars[J].Journal of Southeast University (Natural Science Edition),2005,35(4):940.[doi:10.3969/j.issn.1001-0505.2005.06.024]
[2]王佩纶.投影管玻壳炸裂问题研究[J].东南大学学报(自然科学版),1984,14(1):110.[doi:10.3969/j.issn.1001-0505.1984.01.012]
 Wang Pei-lun.The Research on Implosion of Projection TV Glass Shell[J].Journal of Southeast University (Natural Science Edition),1984,14(4):110.[doi:10.3969/j.issn.1001-0505.1984.01.012]

备注/Memo

备注/Memo:
作者简介: 唐洪祥(1973—), 男, 博士, 副教授, tanghx@dlut.edu.cn.
基金项目: 国家自然科学基金资助项目(50808033)、国家重点基础研究发展计划(973计划)资助项目(2010CB731502)、中国科学院岩土力学国家重点实验室开放基金资助项目(Z110701).
引文格式: 唐洪祥,管毓辉.孔口应力集中问题的Cosserat连续体有限元分析[J].东南大学学报:自然科学版,2013,43(4):849-855. [doi:10.3969/j.issn.1001-0505.2013.04.033]
更新日期/Last Update: 2013-07-20