# [1]唐洪祥,管毓辉.孔口应力集中问题的Cosserat连续体有限元分析[J].东南大学学报(自然科学版),2013,43(4):849-855.[doi:10.3969/j.issn.1001-0505.2013.04.033] 　Tang Hongxiang,Guan Yuhui.Finite element analysis of Cosserat continuum for stress concentration of holes[J].Journal of Southeast University (Natural Science Edition),2013,43(4):849-855.[doi:10.3969/j.issn.1001-0505.2013.04.033] 点击复制 孔口应力集中问题的Cosserat连续体有限元分析() 分享到： var jiathis_config = { data_track_clickback: true };

43

2013年第4期

849-855

2013-07-20

## 文章信息/Info

Title:
Finite element analysis of Cosserat continuum for stress concentration of holes

1大连理工大学土木工程学院, 大连 116024; 2中国科学院岩土力学国家重点实验室, 武汉 430071
Author(s):
1School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
2Key Laboratory of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Keywords:

TU313.1
DOI:
10.3969/j.issn.1001-0505.2013.04.033

Abstract:
The stress concentration phenomena of circular hole, elliptic hole and rhombic hole under ordinary plane strain condition are numerically simulated by two types of Cosserat continuum finite elements, four nodded displacement-based quadrilateral isoparametric element and eight nodded displacement-based quadrilateral isoparametric element. The numerical results indicate that the stress concentration factor and the strain gradient increase significantly when the corner is sharp. The classical continuum finite element may overestimate the stress concentration factor, while these two Cosserat continuum finite elements can reflect the effects of large strain gradient and micro-structure of the holes and thus weaken the stress concentration factor. To simulate the stress concentration phenomena of incompressible and nearly incompressible materials, an independent pressure variable is introduced and a four nodded quadrilateral element(u4ω4p)based on the Hu-Washizu mixed variational principle is developed. The results show that u4ω4p and the eight nodded quadrilateral element can well simulate the stress concentration phenomena in incompressible materials. Besides, u4ω4p may have more application owing to its less cost and less distortion in computation.

## 参考文献/References:

[1] 西田正孝. 应力集中 [M]. 李安定,等译.北京: 机械工业出版社, 1986.
[2] 李又村, 程赫明, 周友坤. 仿真在薄板小孔应力集中现象实验中的应用[J]. 昆明冶金高等专科学校学报, 2008, 24(1): 63-68.
Li Youcun, Cheng Heming, Zhou Youkun. Application of simulation in the experiment of the stress concentration of a plate hole [J]. Journal of Kunming Metallurgy College, 2008, 24(1): 63-68.(in Chinese)
[3] de Borst R. Simulation of srtain localization:a reappraisal of the Cosserat continuum [J]. Engineering Computations, 1991, 8(4): 317-332.
[4] Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization [J]. Computers and Structures, 2005, 83(1): 1-10.
[5] 唐洪祥, 李锡夔. 地基渐进破坏及极限承载力的Cosserat连续体有限元分析[J]. 岩土力学, 2007, 28(11): 2259-2264.
Tang Hongxiang, Li Xikui. Finite element analysis of Cosserat continuum for progressive failure and limit bearing capacity of soil foundation [J]. Rock and Soil Mechanics, 2007, 28(11): 2259-2264.(in Chinese)
[6] Mindlin R D. Influence of couple-stress on stress concentrations [J]. Experimental Mechanics, 1963, 3(1):1-7.
[7] 刘俊, 黄铭, 葛修润. 考虑偶应力影响的应力集中问题求解[J]. 上海交通大学学报, 2001, 35(10): 1481-1485.
Liu Jun, Huang Ming, Ge Xiurun. Solution of stress concentration problem considering influence of couple-stress [J]. Journal of Shanghai Jiaotong University, 2001, 35(10): 1481-1485.(in Chinese)
[8] 赵勇, 张若京. 基于Cosserat理论的小孔应力集中问题的有限元分析[J]. 力学季刊, 2009, 30(3): 410-414.
Zhao Yong, Zhang Ruojing. Finite element analysis of stress concentration problem based on Cosserat theory [J]. Chinese Quarterly of Mechanics, 2009, 30(3): 410-414.(in Chinese)
[9] 张洪武, 王辉. 平面Cosserat模型有限元分析的4和8节点单元与分片试验研究[J]. 计算力学学报, 2005, 22(5): 512-517.
Zhang Hongwu, Wang Hui. 4- and 8-node isoparametric elements for finite element analysis of plane cosserat bodies [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 512-517.(in Chinese)
[10] Ted Belytschko, Wing Kamliu, Brian Moran. Nonlinear finite elements for continua and structures [M]. London: John Wiley and Sons, 2000.
[11] Steinmann P. Theory and numerics of ductile micropolar elastoplastic damage [J]. International Journal For Numerical Methods in Engineering, 1995, 38(4): 583-606.

## 相似文献/References:

[1]安琳,欧阳平,郑亚明.锈坑应力集中对钢筋力学性能的影响[J].东南大学学报(自然科学版),2005,35(6):940.[doi:10.3969/j.issn.1001-0505.2005.06.024]
An Lin,Ouyang Ping,Zheng Yaming.Effect of stress concentration on mechanical properties of corroded reinforcing steel bars[J].Journal of Southeast University (Natural Science Edition),2005,35(4):940.[doi:10.3969/j.issn.1001-0505.2005.06.024]
[2]王佩纶.投影管玻壳炸裂问题研究[J].东南大学学报(自然科学版),1984,14(1):110.[doi:10.3969/j.issn.1001-0505.1984.01.012]
Wang Pei-lun.The Research on Implosion of Projection TV Glass Shell[J].Journal of Southeast University (Natural Science Edition),1984,14(4):110.[doi:10.3969/j.issn.1001-0505.1984.01.012]