# [1]王志如,梁作论,袁竞峰,等.地铁网络无标度特性分析[J].东南大学学报(自然科学版),2013,43(4):895-899.[doi:10.3969/j.issn.1001-0505.2013.04.041] 　Wang Zhiru,Liang Zuolun,Yuan Jingfeng,et al.Scale-free analysis of subway network[J].Journal of Southeast University (Natural Science Edition),2013,43(4):895-899.[doi:10.3969/j.issn.1001-0505.2013.04.041] 点击复制 地铁网络无标度特性分析() 分享到： var jiathis_config = { data_track_clickback: true };

43

2013年第4期

895-899

2013-07-20

## 文章信息/Info

Title:
Scale-free analysis of subway network

1东南大学土木工程学院, 南京210096; 2中国电子科技集团公司南京第十四研究所, 南京210031
Author(s):
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2The Fourteenth Research Institute of China Electronics Technology Group Corporation, Nanjing 210031, China

Keywords:

U231.92
DOI:
10.3969/j.issn.1001-0505.2013.04.041

Abstract:
The number of topological lines that passes by subway station is taken as the quantitative criteria of the degree distribution of metro networks and the degree distribution function is fitted by the nonlinear ordinary least squares(OLS method). First, the topological line is defined and the calculation methods of degree and degree distribution are proposed. Finally, statistical analysis of 52 metro network samples is carried out. The results show that the degree distribution of 52 subway networks can be fitted by SPL(shifted power law)function, and the scale factor -b falls in the range of 2 to 3 for large networks of more than 300 stations and 0&lt;a&lt;1, which indicates that degree distribution of subway networks is between exponential and power law distribution. This conclusion coincides with actual evolution of subway networks.

## 参考文献/References:

[1] Derrible S, Kennedy C. The complexity and robustness of metro networks [J]. Physica A, 2010, 389(17): 3678-3691.
[2] Albert R, Barabási A L. Statistical mechanics of complex networks [J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
[3] 汪小帆,李翔,陈关荣. 复杂网络理论及其应用 [M]. 北京:清华大学出版社,2006: 8-14.
[4] 张君超. 基于复杂网络的城市公交网络特性分析与演化研究[D].成都:西南交通大学交通运输规划与管理学院, 2010.
[5] Angeloudis P, Fisk D. Large subway systems as complex networks [J]. Physica A, 2006,367: 553-558.
[6] 汪涛. 城市公交网络的拓扑结构和演化模型研究[D].南京:南京航空航天大学经济与管理学院, 2009.
[7] 王燚,杨超. 上海市轨道交通网络的复杂网络特征研究[J]. 城市轨道交通研究, 2009(2):33-36.
Wang Yi, Yang Chao. Characteristics of the complex network in shanghai urban rail transit [J].Urban Mass Transit, 2009(2): 33-36.(in Chinese)
[8] Han C, Liu L. Topological vulnerability of subway networks in China [C]//IEEE Management and Service Science. Wuhan, China, 2009: 1-4.
[9] 王志强,徐瑞华. 基于复杂网络的轨道交通道路网可靠性仿真分析[J]. 系统仿真学报, 2009, 21(20): 6670-6674.
Wang Zhiqiang, Xu Ruihua. Reliability simulation analysis of urban rail transit networks based on complex network [J]. Journal of System Simulation, 2009, 21(20): 6670-6674.(in Chinese)
[10] 王云琴. 基于复杂网络理论的城市轨道交通网络连通可靠性研究[D].北京:北京交通大学交通运输学院, 2008.
[11] Derrible S, Kennedy C. Characterizing metro networks: state, form, and structure [J]. Transportation, 2010, 37(2): 275-297.
[12] 何晓群,刘文卿. 应用回归分析 [M]. 2版. 北京: 中国人民大学出版社, 2007: 294-295.
[13] Goldstein M L, Morris S A, Yen G G. Problem with fitting to the power-law distribution [J]. European Physical Journal B, 2004, 41(2): 255-258.
[14] 叶青. 基于复杂网络理论的轨道交通网络脆弱性分析[J]. 中国安全科学学报, 2012, 22(2): 122-126.
Ye Qing. Vulnerability analysis of rail transit based on complex network theory [J]. China Safety Science Journal, 2012, 22(2): 122-126.(in Chinese)
[15] Barabási A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.
[16] 何大韧,刘宗华,汪秉宏. 复杂系统与复杂网络[M]. 北京: 高等教育出版社, 2009: 267-269.
[17] Chang H, Su B B, Zhou Y P, et al. Assortativity and act degree distribution of some collaboration networks [J]. Physica A, 2007, 383(2): 687-702.