[1]齐念,叶继红.基于离散元法的杆系结构几何非线性大变形分析[J].东南大学学报(自然科学版),2013,43(5):917-922.[doi:10.3969/j.issn.1001-0505.2013.05.003]
 Qi Nian,Ye Jihong.Geometric nonlinear analysis with large deformation of member structures by discrete element method[J].Journal of Southeast University (Natural Science Edition),2013,43(5):917-922.[doi:10.3969/j.issn.1001-0505.2013.05.003]
点击复制

基于离散元法的杆系结构几何非线性大变形分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第5期
页码:
917-922
栏目:
土木工程
出版日期:
2013-09-20

文章信息/Info

Title:
Geometric nonlinear analysis with large deformation of member structures by discrete element method
作者:
齐念叶继红
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096
Author(s):
Qi Nian Ye Jihong
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
离散元法 杆系结构 弹簧接触刚度 几何非线性 静动力响应
Keywords:
discrete element method member structure spring contact stiffness geometrical nonlinearity static and dynamic response
分类号:
TU323.5
DOI:
10.3969/j.issn.1001-0505.2013.05.003
摘要:
提出应用离散元法(DEM)来求解二维、三维杆系结构的几何非线性大变形问题.基于简单梁理论,推导了适用于杆系结构分析的弹簧接触刚度系数计算公式,给出了时间步长临界值估算方法,并用实例对其进行了正确性检验.DEM方法本质上是求解结构的动力行为,对于需要计算静力解的问题,综合考虑数值精度和计算效率,建议阻尼系数取为0.7.列出了3个典型数值算例,即2个平面框架和1个空间网格结构,分别对其静力和动力大变形行为进行了模拟,并将结果与其他计算方法的结果进行比较,两者吻合良好.利用DEM方法处理几何非线性问题时无需组集刚度矩阵,也无需迭代求解非线性方程,故该方法适宜于处理杆系结构的大变形问题.
Abstract:
The discrete element method(DEM)was applied in geometric nonlinear analysis with large deformation of member structures including two-dimension and three-dimension frames. Based on the simple beam theory, the spring contact stiffness expression for analysis of member structures was derived. The estimation method of the critical value for the time step size was proposed, and the verification of numerical test was carried out. Since the DEM is essentially used to resolve dynamic problem of structures, for the problem of calculating the static solution, the proposed damping coefficient is taken as 0.7 considering the numerical accuracy and computational efficiency. Three classical numerical examples were presented, including two planar frames and a spatial reticulated structure. Their static and dynamic large deflection behaviours were simulated respectively. The calculation results agree well with the solutions by other numerical methods. Without assembling stiffness matrixes and iterations during structural geometric nonlinear analysis, the DEM is reliable in dealing with large deformation problem for member structures.

参考文献/References:

[1] Teh L H, Clarke M J. Co-rotational and lagrangian formulations for elastic three-dimensional beam finite element [J]. Journal of Constructional Steel Research, 1998, 48(3): 123-144.
[2] Yang Y B, Lin S P, Leu L J. Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation [J]. Engineering Structures, 2007, 29(6): 1189-1200.
[3] Thanh N L, Jean M B, Mohammed H. Efficient formulation for dynamics of co-rotational 2D beams [J]. Computational Mechanics, 2011, 48(2): 153-161.
[4] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65.
[5] 刘凯欣,高凌天. 离散元法研究的评述[J]. 力学进展,2003,33(4):483-490.
  Liu Kaixin, Gao Lingtian. A review of the discrete element method [J]. Advances in Mechanics, 2003, 33(4): 483-490.(in Chinese)
[6] James F H, David S C, William S P. Simulation of unstable fault slip in Granite using a bonded-particle model [J]. Pure and Applied Geophysics, 2002, 159(1/2/3): 221-245.
[7] Azevedo N M, Lemos J V, Almeida J R. A discrete particle model for reinforced concrete fracture analysis [J]. Structural Engineering and Mechanics, 2010, 36(3): 1-19.
[8] Cundall P A. PFC users manual(version 3.1)[M]. Minneapolis, MN, USA: Itasca Consulting Group, Inc., 2004.
[9] 喻莹. 基于有限质点法的空间钢结构连续倒塌破坏研究[D]. 杭州: 浙江大学建筑工程学院, 2010.
[10] 徐小敏,凌道盛,陈云敏,等. 基于线性接触模型的颗粒材料细宏观弹性常数相关关系研究[J]. 岩土工程学报,2010,32(7): 991-998.
  Xu Xiaomin, Ling Daosheng, Chen Yunmin, et al. Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 991-998.(in Chinese)
[11] Kjell M. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals [J]. International Journal for Numerical Methods in Engineering, 1981, 17(1): 145-153.
[12] Wu Tongyue, Wang Renzuo, Wang Chungyue. Large deflection analysis of flexible planar frames [J]. Journal of the Chinese Institute of Engineers, 2006, 29(4): 593-606.
[13] 丁承先,段元锋,吴东岳. 向量式结构力学[M]. 北京:科学出版社,2012: 273-278.
[14] Shugyo M. Elastoplastic large deflection analysis of three-dimensional steel frames [J]. Journal of Structural Engineering, ASCE, 2003, 129(9): 1259-1267.

备注/Memo

备注/Memo:
作者简介: 齐念(1983—),男,博士生;叶继红(联系人),女,博士,教授,博士生导师, yejihong@seu.edu.cn.
基金项目: 国家杰出青年科学基金资助项目(51125031).
引文格式: 齐念,叶继红.基于离散元法的杆系结构几何非线性大变形分析[J].东南大学学报:自然科学版,2013,43(5):917-922. [doi:10.3969/j.issn.1001-0505.2013.05.003]
更新日期/Last Update: 2013-09-20