[1]钟儒勉,樊星辰,黄学漾,等.基于两阶段响应面方法的结合梁斜拉桥多尺度有限元模型修正[J].东南大学学报(自然科学版),2013,43(5):993-999.[doi:10.3969/j.issn.1001-0505.2013.05.016]
 Zhong Rumian,Fan Xingchen,Huang Xueyang,et al.Multi-scale finite element model updating of composite cable-stayed bridge based on two-phase response surface methods[J].Journal of Southeast University (Natural Science Edition),2013,43(5):993-999.[doi:10.3969/j.issn.1001-0505.2013.05.016]
点击复制

基于两阶段响应面方法的结合梁斜拉桥多尺度有限元模型修正()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第5期
页码:
993-999
栏目:
土木工程
出版日期:
2013-09-20

文章信息/Info

Title:
Multi-scale finite element model updating of composite cable-stayed bridge based on two-phase response surface methods
作者:
钟儒勉1樊星辰1黄学漾2宗周红1
1东南大学土木工程学院, 南京 210096; 2福州大学土木工程学院, 福州 350108
Author(s):
Zhong Rumian1 Fan Xingchen1 Huang Xueyang2 Zong Zhouhong1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
关键词:
多尺度模型 响应面方法 结合梁斜拉桥 有限元模型修正 环境振动试验
Keywords:
multi-scale simulation response surface method composite cable-stayed bridge finite element model updating ambient vibration testing
分类号:
TU375
DOI:
10.3969/j.issn.1001-0505.2013.05.016
摘要:
以灌河大桥为工程背景,建立了结构精细有限元模型和多尺度有限元模型,并进行全桥环境振动试验,以获取结构的实测动力特性.基于两阶段响应面方法,分别对多尺度模型与精确有限元模型之间的误差和初步修正后多尺度模型与实际结构之间的误差进行修正,并将修正后结果与实测值进行比较.结果表明:经过两阶段响应面模型修正后的计算结果与实测结果吻合较好,最大频率相对误差不超过8%,模态保证准则MAC值基本在90%以上,说明两阶段响应面方法能够较好地进行多尺度模型修正,保证修正后的模型参数仍然具有其物理意义;修正后的有限元模型可以进一步应用于多尺度损伤识别及损伤预后,服务于桥梁健康监测及安全评估.
Abstract:
Based on the engineering background of the Guanhe Bridge, a composite cable-stayed bridge, the accurate finite element(FE)model and the multi-scale finite element(MFE)model was established. The actual dynamic characteristics is obtained based on the visual inspection and ambient vibration testing. Then based on two-phase response surface methods, the error between the MFE model and the accurate FE model will be updated firstly, and the error between the updated MFE model and the bridge will be updated later and the results between the updated model and the measurements. It can be concluded that the results from the updated MFE model based on the two-phase response surface methods are in good agreement with the measurements, with the maximum error is less than 8% and the values of MAC being above 90%. Which above that the two-phase response surface methods are suitable for MFE model updating, and the parameters of the MFE model still keep their physical significance after updating. It can be used to multi-scale damage detection and multi-scale damage prognosis, and employed for bridge health monitoring and safety evaluation.

参考文献/References:

[1] James G, Sharp D. Multi-scale science: a challenge for the twenty-first century [J]. Advances in Mechanics, 1998, 28(4): 545-551.
[2] Bazant Z P, Chen E P. Scaling of structural failure [J]. Appl Mech Rev, 1997, 50(10): 593-627.
[3] 林旭川,陆新征,叶列平. 钢-混凝土混合框架结构多尺度分析及其建模方法[J].计算力学学报,2010, 6(3): 469-475.
  Lin Xuchuan, Lu Xinzheng, Ye Lieping. Multi-scale finite element modeling and its application in the analysis of a steel-concrete hybrid frame [J]. Chinese Journal of Computational Mechanics, 2010, 6(3):469-475.(in Chinese)
[4] Li Z X, Zhou T, Tommy H T, et al. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges[J]. Engineering Structures, 2007, 29(7): 1507-1524.
[5] 孙正华,李兆霞,陈鸿天. 大跨斜拉桥结构行为一致多尺度有限元模拟[J].中国公路学报,2009,9(5): 68-74.
  Sun Zhenghua, Li Zhaoxia, Chen Hongtian. Concurrent multi-scale finite element modeling of long-span cable-stayed bridge [J]. China Journal of Highway and Transport, 2009, 9(5):68-74.(in Chinese)
[6] 李兆霞,王滢,吴佰建, 等 桥梁结构劣化与损伤过程的多尺度分析方法及其应用[J].固体力学学报,2010,31(6): 731-756.
  Li Zhaoxia, Wang Ying, Wu Baijian, et al. Muti-scale modeling and analysis on structural deterioration and damage in long-span bridges and its application[J]. Chinese Journal of Solid Mechanics, 2010, 31(6):731-756.(in Chinese)
[7] Li Z X, Jiang F F, Tang Y Q. Multi-scale analyses on seismic damage and progressive failure of steel structures[J]. Finite Elements in Analysis and Design, 2012, 48(2): 1358-1369.
[8] Cui J Z, Shi T M, Wang Y L. The two-scale analysis method for bodies with small periodic configurations [J]. Structural Engineering and Mechanics, 1999, 7(6): 601-614.
[9] 任国武. 材料的多尺度模拟[D].上海:复旦大学物理学院,2010.
[10] Liu Wing Kam, Qian Dong, Gonella Stefano, et al. Multiscale methods for mechanical science of complex material: bridging from quantum to stochastic multi-resolution continuum [J]. International Journal for Numerical Methods in Engineering, 2010, 83(8/9):1039-1080.
[11] Takizawa K, Tezduyar T E. Multiscale space-time fluid-structure interaction techniques [J]. Computational Mechanics, 2011,48(3):247-267.
[12] Ren Weixin, Zong Zhouhong. Output-only modal parameter identification of civil engineering structures [J]. International Journal of Structural Engineering and Mechanics, 2004, 17(3/4):429-444.
[13] 郝文化. ANSYS在土木工程应用实例[M].北京:中国水利水电出版社,2005.
[14] 宗周红,任伟新. 桥梁有限元模型修正与模型确认[M].北京:人民交通出版社,2012:109-117

备注/Memo

备注/Memo:
作者简介: 钟儒勉(1989—),男,博士生;宗周红(联系人),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178101,51378112).
引文格式: 钟儒勉,樊星辰,黄学漾,等.基于两阶段响应面方法的结合梁斜拉桥多尺度有限元模型修正[J].东南大学学报:自然科学版,2013,43(5):993-999. [doi:10.3969/j.issn.1001-0505.2013.05.016]
更新日期/Last Update: 2013-09-20