[1]黄娟,杨思思,郭杨,等.强化供氧对低温域人工湿地脱氮及微环境的影响[J].东南大学学报(自然科学版),2013,43(5):1000-1004.[doi:10.3969/j.issn.1001-0505.2013.05.017]
 Huang Juan,Yang Sisi,Guo Yang,et al.Influence of aeration on nitrogen removal effect and microenvironment in constructed wetland at low temperature[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1000-1004.[doi:10.3969/j.issn.1001-0505.2013.05.017]
点击复制

强化供氧对低温域人工湿地脱氮及微环境的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第5期
页码:
1000-1004
栏目:
环境科学与工程
出版日期:
2013-09-20

文章信息/Info

Title:
Influence of aeration on nitrogen removal effect and microenvironment in constructed wetland at low temperature
作者:
黄娟1杨思思1郭杨12钟秋爽1王世和1刘洋1
1东南大学土木学院, 南京 210096; 2江苏省住房和城乡建设厅城市节约用水办公室, 南京 210036
Author(s):
Huang Juan1 Yang Sisi1 Guo Yang12 Zhong Qiushuang1 Wang Shihe1 Liu Yang1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Urban Water Conservation Office, Construction Department of Jiangsu Province, Nanjing 210036, China
关键词:
人工湿地 低温域 强化供氧 微生物 脱氮效率
Keywords:
constructed wetland low temperature aeration microorganism nitrogen removal efficiency
分类号:
X52
DOI:
10.3969/j.issn.1001-0505.2013.05.017
摘要:
在低温条件下(T<15 ℃)对人工湿地进行植物地上部分收割并覆膜保温,采取强化供氧措施,探讨了湿地溶解氧分布、微生物数量及净化效率的变化规律.结果表明,强化供氧宜在湿地前段进行,最佳气水比约为4∶1.最佳供氧条件下,湿地氧环境显著改善,供氧前湿地的氧浓度普遍低于0.2 mg/L,中后段接近于零,供氧后湿地前段氧浓度达1.2 mg/L,整体湿地氧浓度高于0.4 mg/L.强化供氧使湿地前段硝化菌数量提高1个数量级,中后段反硝化菌数量提高1个数量级.强化供氧有利于有机物和氮类物质的去除,COD去除率提高了15%,TN,NH+4-N去除率均提高了15%~20%.
Abstract:
Aeration was applied to constructed wetlands at low temperature(T<15 ℃)after the above-ground part of plants was harvested and the wetlands were covered by plastic films. Then the dissolved oxygen distribution, microorganism amount and contamination removal efficiency were investigated. The results show that aeration should be carried out in the forepart of wetland and the optimum gas-flow ratio is about 4∶1. Under the optimal aeration condition, the oxygen condition is obviously improved. The oxygen concentration is mostly lower than 0.2 mg/L before aeration. Especially in the mid and rear part, it is close to zero. After aeration, the oxygen concentration is generally over 0.4 mg/L and it can even be over 1.2 mg/L in the forepart. The nitrobacteria amount in the forepart of wetland increases one magnitude after aeration. The same occurs for denitrifying bacteria in the middle and rear part. Moreover, the removal efficiency of COD increases by 15%, and that of TN, NH+4-N increases by 15% to 20%.

参考文献/References:

[1] Georgios D G, Vassilios A T. A small-size vertical flow constructed wetland for on-site treatment of household wastewater [J]. Ecological Engineering, 2012, 44(7): 337-343.
[2] Soon-An O, Katsuhiro U, Daisuke I, et al. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants [J]. Bioresource Technology, 2010, 101(19): 7239-7244.
[3] Wang F, Liu Y, Ma Y X, et al. Characterization of nitrification and microbial community in a shallow moss constructed wetland at cold temperatures [J]. Ecological Engineering, 2012, 42(5): 124-129.
[4] Ghada E. Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt [J]. Ain Shams Engineering Journal, 2010, 1(1): 1-9.
[5] Alexandros I S, Vassilios A T. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands [J]. Chemical Engineering Journal, 2012, 181-182(1): 416-430.
[6] Carrie R T, Paul B H, Otto R S, et al. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms [J]. Ecological Engineering, 2011, 37(5): 703-710.
[7] Ouellet-Plamondona C, Chazarenc F, Comeau Y, et al. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate [J]. Ecological Engineering, 2006, 27(3): 258-264.
[8] Ham J H, Yoon C G, Jeon J H, et al. Feasibility of a constructed wetland and wastewater stabilisation pond system as a sewage reclamation system for agricultural reuse in a decentralised rural area [J]. Water Science & Technology, 2007, 55(1/2): 503-511.
[9] 陈晓东,常文越,王磊,等.北方人工湿地污水处理技术应用研究与示范工程[J].环境保护科学, 2007, 33(2): 25-28, 61.
  Chen Xiaodong, Chang Wenyue, Wang Lei, et al. Application study and engineering demonstration of northern constructed wetlands wastewater disposal process [J]. Environmental Protection Science, 2007, 33(2): 25-28, 61.(in Chinese)
[10] Picard C R, Fraser L H, Steer D. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms [J]. Bioresource Technology, 2005, 96(9): 1039-1047.
[11] Brodrick S J, Cullen P, Maher W, et al. Denitrification in a natural wetland receiving secondary treated effluent [J]. Water Research, 1988, 22(4): 431-439.
[12] Hsu C B, Yeh C H, Ho Y S, et al. Biodiversity of constructed wetlands for wastewater treatment [J]. Ecological Engineering, 2011, 37(10): 1533-1545.
[13] Solano M L, Soriano P, Ciria M P. Constructed wetlands as a sustainable solution for wastewater treatment in small villages [J]. Biosystems Engineering, 2004, 87(1): 109-118.
[14] 周健,王继欣,张勤,等. 序批式人工湿地冬季低温脱氮的效能研究[J].环境科学学报, 2007, 27(10): 1652-1656.
  Zhou Jian, Wang Jixin, Zhang Qin, et al. Research on nitrogen removal efficiency in a sequential batch constructed wetland at low temperatures in winter [J]. Acta Science Circumstantiae, 2007, 27(10): 1652-1656.(in Chinese)
[15] Green M, Friedler E, Ruskol Y, et al. Investigation of alternative method for nitrification in constructed wetlands [J]. Water Science and Technology, 1997, 35(5): 63-70.
[16] Neralla S, Weaver R W, Lesikar B J, et al. Improvement of domestic wastewater quality by subsurface flow constructed wetlands [J]. Bioresource Technology, 2000, 75(1): 19-25.
[17] Luederitz V, Eckert E, Lange-Weber M, et al. Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands [J]. Ecological Engineering, 2001, 18(2): 157-171.
[18] Li X F, Jiang C C. Constructed wetland systems for water pollution control in North China [J]. Water Science and Technology, 1995, 32(3): 349-356.
[19] 黄娟, 王世和, 鄢璐, 等. 潜流型人工湿地硝化和反硝化作用强度研究[J]. 环境科学, 2007, 28(9): 1965-1969.
  Huang Juan, Wang Shihe, Yan Lu, et al. Intensity of nitrification and denitrification in subsurface-flow constructed wetlands [J]. Environmental Science, 2007, 28(9): 1965-1969.(in Chinese)
[20] Huang J, Wang S H, Yan L, et al. Plant photosynthesis and its influence on removal efficiencies in constructed wetlands [J]. Ecological Engineering, 2010, 36(8): 1037-1043.

相似文献/References:

[1]王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版),2003,33(3):359.[doi:10.3969/j.issn.1001-0505.2003.03.028]
 Wang Shihe,Wang Wei,Yu Yan.Influence of hydraulic condition on treatment effect of constructed wetland[J].Journal of Southeast University (Natural Science Edition),2003,33(5):359.[doi:10.3969/j.issn.1001-0505.2003.03.028]
[2]刘慎坦,王国芳,谢祥峰,等.不同基质对人工湿地脱氮效果和硝化及反硝化细菌分布的影响[J].东南大学学报(自然科学版),2011,41(2):400.[doi:10.3969/j.issn.1001-0505.2011.02.035]
 Liu Shentan,Wang Guofang,Xie Xiangfeng,et al.Effect of matrix on denitrification efficiency and distribution of nitrifying and denitrifying bacteria in constructed wetlands[J].Journal of Southeast University (Natural Science Edition),2011,41(5):400.[doi:10.3969/j.issn.1001-0505.2011.02.035]

备注/Memo

备注/Memo:
作者简介: 黄娟(1980—),女,博士,副教授,seu070303@163.com.
基金项目: 国家自然科学基金资助项目(50909019,51079029)、江苏省优势学科发展基金资助项目(PAPD).
引文格式: 黄娟,杨思思,郭杨,等.强化供氧对低温域人工湿地脱氮及微环境的影响[J].东南大学学报:自然科学版,2013,43(5):1000-1004. [doi:10.3969/j.issn.1001-0505.2013.05.017]
更新日期/Last Update: 2013-09-20