[1]张培伟.低频P波荷载下压电介质中共面裂纹的耦合断裂行为[J].东南大学学报(自然科学版),2013,43(5):1024-1033.[doi:10.3969/j.issn.1001-0505.2013.05.021]
 Zhang Peiwei.Coupled fracture behavior of two coplanar cracks in piezoelectric material under low-frequency P-wave[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1024-1033.[doi:10.3969/j.issn.1001-0505.2013.05.021]
点击复制

低频P波荷载下压电介质中共面裂纹的耦合断裂行为()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第5期
页码:
1024-1033
栏目:
交通运输工程
出版日期:
2013-09-20

文章信息/Info

Title:
Coupled fracture behavior of two coplanar cracks in piezoelectric material under low-frequency P-wave
作者:
张培伟
东南大学土木工程学院, 南京 210096; 东南大学江苏省工程力学分析重点实验室, 南京 210096
Author(s):
Zhang Peiwei
School of Civil Engineering, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
共面裂纹 应力强度因子 能量释放率 动态断裂
Keywords:
coplanar cracks stress intensity factor energy release rate dynamic fracture
分类号:
U441.4
DOI:
10.3969/j.issn.1001-0505.2013.05.021
摘要:
对压电介质中共面裂纹的动态断裂问题进行建模,并求解该边界值问题.将裂纹形状等效为等面积的矩形以便于理论分析和增加安全评价的可靠性,采用一般Almansi理论得到了广义应力场、广义应力强度因子和能量释放率的解析表达式.考虑部分电导通裂纹边界条件,将边界值问题转换为3组对偶积分方程,并以裂纹上下表面的位移阶跃函数作为未知函数.通过将位移阶跃函数展开成Jacobi多项式,得到裂纹尖端的广义奇异应力、广义强度因子和能量释放率的解析解.最后,通过数值算例研究了P波载荷频率和矩形裂纹几何尺寸对裂纹扩展行为的影响规律.研究结果显示了该方法的正确性及在动载作用下裂纹相互作用引起裂纹扩展行为的复杂性.
Abstract:
The dynamic fracture problem of coplanar double rectangular cracks is constructed into a kind of boundary value problem, which is solved to compose the analytical expression of generalized stress fields, generalized intensity factors and energy release rate with the help of generalized Almansi theorem. Rectangular crack is more suitable for analyzing and over-security for reliability. The boundary value problem is first transformed into three pairs of dual integral equations with the jump functions of the displacements across the crack surface as unknown functions. The unknown functions can be expanded directly into series of Jacobi polynomials which can be actually found close-form solution. Then, the analytical expressions for generalized singular stress at crack tip, generalized intensity factors and energy release rate are strictly derived in form of infinite series. The numerical results are graphically shown to demonstrate intuitively effects of loading frequency as well as geometry on fracture criteria of cracks. And the correction of this method and the sophistication of crack propagation laws due to dynamic loads and couple effects are also verified.

参考文献/References:

[1] Zhang P W, Wu H P, Wang B. Time-harmonic P-waves engulfing a rectangular limited-permeable crack in piezoelectric medium: energy density and energy release [J]. Theoretical and Applied Fracture Mechanics, 2011, 59(3): 169-184.
[2] Zhao X H, Meguid S A. On the dynamic behaviour of a piezoelectric laminate with multiple interfacial collinear cracks [J]. International Journal of Solids and Structures, 2002, 39(9): 2477-2494.
[3] Liu F, Zhong X C. Transient response of two collinear dielectric cracks in a piezoelectric solid under inplane impacts [J]. Applied Mathematics and Computation, 2010, 217(8): 3779-3791.
[4] Hao T H, Shen Z Y. A new electric boundary-condition of electric fracture-mechanics and its applications [J]. Engineering Fracture Mechanics, 1994, 47(6): 793-802.
[5] Hao T H. Multiple collinear cracks in a piezoelectric material [J]. International Journal of Solids and Structures, 2001, 38(50/51): 9201-9208.
[6] Ding H J, Chen B, Liang J. General solutions for coupled equations for piezoelectric media [J]. International Journal of Solids and Structures, 1996, 33(16): 2283-2298.
[7] Yang F Q. Fracture mechanics for a Mode Ⅰ crack in piezoelectric materials [J]. International Journal of Solids and Structures, 2001, 38(21): 3813-3830.
[8] Gradshteyn I S, Ryzhik I M. Table of integral, series and products [M]. New York: Academic Press, 1980.
[9] Erdelyi A. Tables of Integral Transforms [M]. New York: McGraw-Hill, 1954.
[10] Morse P M, Feshbach H. Methods of Theoretical Physics [M]. New York: McGraw-Hill, 1958.
[11] Itou S. 3-Dimensional wave-propagation in a cracked elastic solid [J]. Journal of Applied Mechanics, ASME, 1978, 45(4): 807-811.
[12] Zhang P W, Zhou Z G, Wu L Z. Coupled field state around three parallel non-symmetric cracks in a piezoelectric/piezomagnetic material plane [J]. Archive of Applied Mechanics, 2009, 79(10): 965-979.
[13] Zhang P W, Zhou Z G, Li G. Q. Interaction of four parallel non-symmetric permeable mode-Ⅲ cracks with different lengths in a functionally graded piezoelectric material plane [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2009, 89(9): 767-788.(in Russian)
[14] Itou S. Three-dimensional dynamic stress intensity factors around two parallel square cracks in an infinite elastic medium subjected to a time-harmonic stress wave [J]. Acta Mechanica, 2000, 143(1/2): 79-90.
[15] Itou S. 3D dynamic stress intensity factors at three rectangular cracks in an infinite elastic medium subjected to a time-harmonic stress wave [J]. Archive of Applied Mechanics, 1999, 69(4): 286-298.

相似文献/References:

[1]钟志鹏,万水.考虑裂纹接触摩擦的逐点Lagrange乘子法[J].东南大学学报(自然科学版),2012,42(5):994.[doi:10.3969/j.issn.1001-0505.2012.05.035]
 Zhong Zhipeng,Wan Shui.Point-by-point Lagrange multiplier method for modeling interface cracks with contact and friction[J].Journal of Southeast University (Natural Science Edition),2012,42(5):994.[doi:10.3969/j.issn.1001-0505.2012.05.035]
[2]王莹,李兆霞,赵丽华.大跨钢桥钢箱梁损伤时变模型及疲劳可靠性评估[J].东南大学学报(自然科学版),2013,43(5):1017.[doi:10.3969/j.issn.1001-0505.2013.05.020]
 Wang Ying,Li Zhaoxia,Zhao Lihua.Time-varying damage model and fatigue reliability assessment for box-girder of long-span steel bridge[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1017.[doi:10.3969/j.issn.1001-0505.2013.05.020]
[3]王鹏,张军辉,黄晓明.加宽工程路面开裂影响因素的数值分析[J].东南大学学报(自然科学版),2007,37(4):671.[doi:10.3969/j.issn.1001-0505.2007.04.025]
 Wang Peng,Zhang Junhui,Huang Xiaoming.Analysis of influence factors of widening pavement cracking[J].Journal of Southeast University (Natural Science Edition),2007,37(5):671.[doi:10.3969/j.issn.1001-0505.2007.04.025]
[4]Bui Manh Tuan,陈云飞.平板表面裂纹应力强度因子和应力分布规律的确定[J].东南大学学报(自然科学版),2014,44(4):728.[doi:10.3969/j.issn.1001-0505.2014.04.009]
 Bui Manh Tuan,Chen Yunfei.Determination of stress intensity factors and stress distribution for surface crack in plates[J].Journal of Southeast University (Natural Science Edition),2014,44(5):728.[doi:10.3969/j.issn.1001-0505.2014.04.009]

备注/Memo

备注/Memo:
作者简介: 张培伟(1980—),男,博士,讲师,zhangpeiwei@seu.edu.cn.
基金项目: 中国博士后科学基金资助项目(2012M511646)、江苏省博士后科学基金资助项目(1102043C).
引文格式: 张培伟.低频P波荷载下压电介质中共面裂纹的耦合断裂行为[J].东南大学学报:自然科学版,2013,43(5):1024-1033. [doi:10.3969/j.issn.1001-0505.2013.05.021]
更新日期/Last Update: 2013-09-20