[1]刘伟庆,方海,祝露,等.船-桥碰撞力理论分析及复合材料防撞系统[J].东南大学学报(自然科学版),2013,43(5):1080-1086.[doi:10.3969/j.issn.1001-0505.2013.05.030]
 Liu Weiqing,Fang Hai,Zhu Lu,et al.Ship-bridge collision force mechanism and composite anti-collision system[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1080-1086.[doi:10.3969/j.issn.1001-0505.2013.05.030]
点击复制

船-桥碰撞力理论分析及复合材料防撞系统()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第5期
页码:
1080-1086
栏目:
交通运输工程
出版日期:
2013-09-20

文章信息/Info

Title:
Ship-bridge collision force mechanism and composite anti-collision system
作者:
刘伟庆方海祝露韩娟吴志敏
南京工业大学先进工程复合材料研究中心, 南京211816
Author(s):
Liu Weiqing Fang Hai Zhu Lu Han Juan Wu Zhimin
Advanced Engineering Composites Research Center, Nanjing University of Technology, Nanjing 211816, China
关键词:
船-桥碰撞 船艏刚度 简化动力模型 复合材料防撞系统
Keywords:
ship-bridge collision bow stiffness simplified dynamic model composite anti-collision system
分类号:
U442.55
DOI:
10.3969/j.issn.1001-0505.2013.05.030
摘要:
考虑桥墩刚度与船艏刚度,采用质点弹簧模型,建立了船-桥碰撞动力方程,分析了桥墩与船艏的相对刚度、碰撞接触时间对峰值撞击力的影响规律,修正了我国《公路桥涵设计通用规范》中漂浮物撞击力公式.研制了新型纤维增强复合材料防撞系统,开展了冲击性能试验,实现了相关桥梁防船撞工程应用.结果表明:当桥船相对刚度之比小于50时,峰值撞击力随桥-船相对刚度的增大呈对数形式增大;当桥船相对刚度之比大于等于50时,峰值撞击力可近似按欧洲统一规范取值.碰撞接触时间与船舶质量、船艏刚度相关.复合材料防撞系统能有效延长船-桥碰撞接触时间,大幅削减撞击力,从而有效保护桥墩结构安全,减轻船舶受损程度,具有显著的技术经济优势.
Abstract:
The governing equation of ship-bridge collision, considering the influence of pier stiffness and ship stiffness, was proposed by using the mass-spring model. The effects of bridge-ship relative stiffness and contact time on the peak impact force were analyzed. The impact force formula of flotsam in the General Code for Design of Highway Bridges and Culverts was revised. Meanwhile, an innovative fiber reinforced composite anti-collision system was developed. The corresponding impact tests were conducted. Furthermore, this composite anti-collision system is applied in the practical bridge anti-collision engineering. The results show that when the bridge-ship relative stiffness is less than 50, the peak impact force logarithmically increases to the increase in the bridge-ship relative stiffness; otherwise, the peak impact force can be approximately calculated according to European Standard. The contact time is related to the mass and stiffness of ship. The composite anti-collision system can effectively prolong the contact time of ship-bridge collision and decrease the impact force substantially; therefore the pier structure can be effectively protected and the damage degree of ship can be relieved. Overall, the composite anti-collision system has significant technical and economic advantages.

参考文献/References:

[1] Consolazio G R, Cook R A, McVay M C, et al. Barge impact testing of the St. George Island Causeway Bridge.Phase Ⅲ: physical testing and data interpretation [R]. Gainesville, FL, USA: University of Florida, 2006.
[2] Zhang B B. Influence of pier nonlinear impact angle and column shape on pier response to barge impact loading [D]. Gainesville, FL, USA: University of Florida, 2004.
[3] 罗旗帜, 何云勇, 徐中山. 连续刚构桥船桥碰撞的计算模型和动力响应[J]. 重庆交通大学学报: 自然科学版, 2010, 29(4): 501-505.
  Luo Qizhi, He Yunyong, Xu Zhongshan. Calculation model and dynamic response of continuous rigid frame bridge in collision with ship [J]. Journal of Chongqing Jiaotong University: Natural Science, 2010, 29(4): 501-505.(in Chinese)
[4] 徐春林. 船舶撞击桥梁的理论分析与试验研究[D]. 南京: 南京航空航天大学航空宇航学院, 2011.
[5] Consolazio G R, Davidson M T, Cowan D R. Barge bow force-deformation relationships for barge-bridge collision analysis [J]. Journal of the Transportation Research Board, 2009, 2131: 3-14.
[6] 王君杰, 陈诚, 汪宏, 等. 基于碰撞数值模拟的桥梁等效静力船撞力——基本公式[J]. 公路交通技术, 2009(2): 66-70.
  Wang Junjie, Chen Cheng, Wang Hong, et al. Equivalent static force of ship impact to bridge based on impact numeric simulation—fundamental formula [J]. Technology of Highway and Transport, 2009(2): 66-70.(in Chinese)
[7] 陈明栋, 陈明, 陈国虞, 等. 安庆长江铁路大桥防船撞研究[J]. 重庆交通大学学报: 自然科学版, 2009, 28(2): 203-207.
  Chen Mingdong, Chen Ming, Chen Guoyu, et al. Study on anti-ship collision for Anqing Yangtze River railway bridge [J]. Journal of Chongqing Jiaotong University: Natural Science, 2009, 28(2): 203-207.(in Chinese)
[8] 肖波, 李军. 船桥碰撞中桥墩防撞装置性能研究[J]. 水运工程, 2010(3): 17-20.
  Xiao Bo, Li Jun. Study on pier protective device under collision of ship and bridge [J]. Port & Waterway Engineering, 2010(3): 17-20.(in Chinese)
[9] 项海帆, 范立础, 王君杰. 船撞桥设计理论的现状与需要进一步研究的问题[J]. 同济大学学报:自然科学版, 2002,30(4): 386-392.
  Xiang Haifan, Fan Lichu, Wang Junjie. State of art of ship collision design for bridges and future research [J]. Journal of Tongji University: Natural Science, 2002,30(4): 386-392.(in Chinese)
[10] Vrouwenvelder A C. Design for ship impact according to Eurocode Ⅰ, ship collision analysis [S]. London:CRC Press,1998.
[11] 中华人民共和国交通部. JTG D60—2004公路桥涵设计通用规范[S]. 北京: 人民交通出版社, 2004.
[12] Woisin G. Design against collision [J]. Schiff & Hafen, 1979, 31(2): 1059-1069.
[13] 岩井聪, 庄司邦昭. 关于船舶对桥梁的安全措施[J]. 中国航海, 1986(12): 153-164.
  Akira Iwai, Kuniaki Shoji. On the safety measures between ship and bridge [J]. Navigation of China, 1986(12): 153-164.(in Chinese)
[14] 万志敏, 赵桂范, 杜星文. 复合材料结构的能量吸收[J]. 材料科学与工艺, 2001, 9(3): 247-249.
  Wan Zhimin, Zhao Guifan, Du Xingwen. Energy absorption in structures of composite materials [J]. Materials Science & Technology, 2001, 9(3): 247-249.(in Chinese)
[15] Srivastava V K. Impact behaviour of sandwich GFRP-foam-GFRP composites [J]. International Journal of Composite Materials, 2012, 2(4):63-66.
[16] Yuen S C K, Nurick G N, Starke R A. The energy absorption characteristics of double-cell tubular profiles [J]. Latin American Journal of Solids and Structures, 2008, 5(4): 289-317.

备注/Memo

备注/Memo:
作者简介: 刘伟庆(1964—),男,博士,教授,博士生导师,wqliu@njut.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51238003)、国家自然科学基金资助项目(51008157)、江苏省高校自然科学研究重大资助项目(12KJA580002).
引文格式: 刘伟庆,方海,祝露,等.船-桥碰撞力理论分析及复合材料防撞系统[J].东南大学学报:自然科学版,2013,43(5):1080-1086. [doi:10.3969/j.issn.1001-0505.2013.05.030]
更新日期/Last Update: 2013-09-20