[1]邹红艳,达飞鹏,王朝阳.基于多尺度Gabor特征的三维人脸识别方法[J].东南大学学报(自然科学版),2013,43(6):1212-1216.[doi:10.3969/j.issn.1001-0505.2013.06.015]
 Zou Hongyan,Da Feipeng,Wang Zhaoyang.3D face recognition method based on multi-scale Gabor features[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1212-1216.[doi:10.3969/j.issn.1001-0505.2013.06.015]
点击复制

基于多尺度Gabor特征的三维人脸识别方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第6期
页码:
1212-1216
栏目:
计算机科学与工程
出版日期:
2013-11-20

文章信息/Info

Title:
3D face recognition method based on multi-scale Gabor features
作者:
邹红艳12达飞鹏1王朝阳1
1东南大学自动化学院, 南京210096; 2南京林业大学机械电子工程学院, 南京210037
Author(s):
Zou Hongyan12 Da Feipeng1 Wang Zhaoyang1
1School of Automation, Southeast University, Nanjing 210096, China
2School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
多尺度Gabor特征 三维人脸识别 几何图像
Keywords:
multi-scale Gabor features 3D face recognition geometry image
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2013.06.015
摘要:
提出了一种基于多尺度Gabor特征的三维人脸识别方法.首先将预处理后的三维人脸模型映射至平面上的参数化网格,再利用线性差值得到空间三维网格的二维几何图像.然后利用多尺度Gabor变换将几何图像分解为不同尺度下包含不同频率、不同方向人脸信息的Gabor响应系数,并提取垂直低频Gabor响应作为人脸的Gabor特征.最后计算不同尺度下Gabor特征的相似度并融合为人脸识别的总相似度.在FRGC v2.0数据库中进行的大量实验表明,提出的方法识别效果较好,提取的人脸Gabor特征具有较好的身份表征性.
Abstract:
A 3D face recognition method based on multi-scale Gabor features is proposed. First, the preprocessed 3D face model is mapped into a planar parameterized mesh. A 2D geometry image of the spatial 3D mesh is obtained by means of linear interpolation. Then the geometry image is decomposed into Gabor responses of different scales, frequencies and orientations, among which the vertical Gabor responses of low frequencies are extracted as the facial Gabor features. Finally, similarities of multi-scale Gabor features are computed and fused as an overall similarity score. Extensive experiments are conducted on the FRGC v2.0 database, and the results verify that the facial Gabor features extracted by the proposed method can effectively represent the identity.

参考文献/References:

[1] Al-Osaimi F, Bennamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognition[J]. International Journal of Computer Vision, 2008, 81(8):1346-1357.
[2] Wang Yueming, Liu Jiangzhuang, Tang Xiaoou. Robust 3D face recognition by local Shape difference boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1858-1870.
[3] Hesher C, Srivastava A, Erlebacher G. A novel technique for face recognition using range imaging[C]//Proceedings of the Symposium on Signal Processing and Its Applications. Paris, France, 2003:201-204.
[4] Srivastava A, Liu X, Hesher C. Face recognition using optimal linear components of range images[J]. Image and Vision Computing, 2006, 24(3): 291-299.
[5] Daugman J. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(7):1169-1179.
[6] Cook J A, Chandran V, Fookes C B. 3D face recognition using log-Gabor templates[C]//British Machine Vision Conference. Edinborough, Scotland, 2006:1-10.
[7] Xu Chenghua, Li Stan, Tan Tieniu, et al. Automatic 3D face recognition from depth and intensity Gabor features[J]. Pattern Recognition, 2009, 42(9):1895-1905.
[8] Dorai C, Jain A K. COSMOS—a representation scheme for 3D free-form objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130.
[9] 邹红艳, 达飞鹏, 李晓莉.基于面部曲线特征融合的三维人脸识别[J].东南大学学报:自然科学版,2012,42(4):618-622.
  Zou Hongyan, Da Feipeng, Li Xiaoli. 3D face recognition using compositional features from facial curves[J]. Journal of Southeast University: Natural Science Edition, 2012,42(4):618-622.(in Chinese)
[10] Fltemier T, Bowyer K, Flynn P. Using a multi-instance enrollment representation to improve 3d face recognition[C]//First IEEE Conference on Biometrics: Theory, Application, and System. Washington, DC, USA, 2007:1-6.
[11] 刘帅师,田彦涛,万川.基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J].自动化学报, 2011, 37(12):1455-1463.
  Liu Shuaishi, Tian Yantao,Wan Chuan. Facial expression recognition method based on Gabor multi-orientation features fusion and block histogram[J]. Acta Automatica Sinica, 2011, 37(12): 1455-1463.(in Chinese)

备注/Memo

备注/Memo:
作者简介: 邹红艳(1980—),女,博士生,讲师;达飞鹏(联系人),男,博士,教授,博士生导师,dafp@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51175081,61107001)、江苏省高校自然科学研究计划资助项目(13KJB510015).
引文格式: 邹红艳,达飞鹏,王朝阳.基于多尺度Gabor特征的三维人脸识别方法[J].东南大学学报:自然科学版,2013,43(6):1212-1216. [doi:10.3969/j.issn.1001-0505.2013.06.015]
更新日期/Last Update: 2013-11-20