[1]夏晓娟,吴逸凡,祝靖,等.600 V VDMOS器件的反向恢复热失效机理[J].东南大学学报(自然科学版),2013,43(6):1243-1247.[doi:10.3969/j.issn.1001-0505.2013.06.021]
 Xia Xiaojuan,Wu Yifan,Zhu Jing,et al.Thermal failure mechanism of 600 V VDMOS during reverse recovery[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1243-1247.[doi:10.3969/j.issn.1001-0505.2013.06.021]
点击复制

600 V VDMOS器件的反向恢复热失效机理()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第6期
页码:
1243-1247
栏目:
电子科学与工程
出版日期:
2013-11-20

文章信息/Info

Title:
Thermal failure mechanism of 600 V VDMOS during reverse recovery
作者:
夏晓娟12吴逸凡3祝靖3成建兵12郭宇锋12孙伟锋3
1南京邮电大学电子科学与工程学院, 南京 210003; 2南京邮电大学江苏省射频集成与微组装工程实验室, 南京 210003; 3东南大学国家专用集成电路系统工程技术研究中心, 南京 210096
Author(s):
Xia Xiaojuan12 Wu Yifan3 Zhu Jing3 Cheng Jianbing12 Guo Yufeng12 Sun Weifeng3
1College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2Jiangsu Province Engineering Lab of RF Integrated and Micro Assembly, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China
关键词:
VDMOS 体二极管 反向恢复 热失效
Keywords:
vertical double-diffused metal oxide semiconductor(VDMOS) body diode reverse recovery thermal failure
分类号:
TN386
DOI:
10.3969/j.issn.1001-0505.2013.06.021
摘要:
为了研究VDMOS器件体二极管在反向恢复过程中的失效机理,详细分析了600 V VDMOS器件体二极管的工作过程,采用TCAD模拟软件研究了体二极管正向导通和反向恢复状态下的载流子密度分布及温度分布情况.模拟结果表明,VDMOS器件的体二极管在正向导通时,器件终端区同样会贮存大量的少数载流子,当体二极管从正向导通变为反向恢复状态时,贮存的少数载流子会以单股电流的形式被抽取,使得VDMOS器件中最靠近终端位置的原胞中的p-body区域温度升高,从而导致该区域寄生三极管基区电阻增大、发射结内建电势降低,最终触发寄生三极管开启,造成VDMOS器件失效.分析结果与实验结果一致.
Abstract:
In order to study the failure mechanism of the body diode in a vertical double-diffused metal oxide semiconductor(VDMOS)device, the reverse-recovery phenomenon of the body diode in 600 V VDMOS is investigated in detail. The distributions of carrier density and temperature of the VDMOS during the forward conduction condition and reverse recovery condition are analyzed by the TCAD simulation tools. The simulation results show that lots of the minority carriers can be stored in the termination during the on-state mode of the body diode. When the diode switches from the forward conduction mode to the reverse blocking mode, the minority carriers stored in the termination will be removed as current in a single path. As a result, the temperature in the p-body region of the cell near the termination is increased, which leads to the increase of the base resistance in the parasitic bipolar and the decrease of the built-in potential of the emitter junction. The parasitic bipolar can be triggered and the VDMOS device fails. The analytical results agree with the measurements well.

参考文献/References:

[1] Baliga B J. Fundamentals of power semiconductor devices [M]. New York: Springer, 2008: 3-5.
[2] Choi W, Young S. Effectiveness of fast recovery MOSFETs to reliability of switching power supplies[C]//International Symposium on Power Electronics Electrical Drives Automation and Motion. Pisa, Italia, 2010: 1113-1118.
[3] Srikanth S, Karmalkar S. Charge sheet superjunction(CSSJ): a new superjunction concept [C]//International Workshop on Physics of Semiconductor Devices. Mumbai, India, 2007: 795-798.
[4] Srikanth S, Karmalkar S. On the charge sheet superjunction(CSSJ)MOSFET [J]. IEEE Transactions on Electron Devices, 2008, 50(11): 3562-3568.
[5] Hirler F, Kapels H. YFET-trench superjunction process Window extended [C]//International Symposium on Power Semiconductor Devices and ICs. Barcelona, Spain, 2009: 299-302.
[6] Qian Qinsong, Sun Weifeng, Zhu Jing, et al. A novel charge-imbalance termination for trench superjunction VDMOS [J]. IEEE Electron Device Letters, 2010, 31(12): 1434-1436.
[7] Zhu Jing, Zhang Long, Sun Weifeng, et al. Analysis of the electrical characteristics of 600 V-class electron irradiated fast recovery superjunction VDMOS [J]. Solid-State Electronics, 2013, 80: 38-44.
[8] Lutz J, Domeij M. Dynamic avalanche and reliability of high voltage diodes [J]. Microelectronics Reliability, 2003, 43(4): 529-536.
[9] Lutz J, Baburske R. Dynamic avalanche in bipolar power devices [J]. Microelectronics Reliability, 2012, 52(3): 475-481.
[10] Chen Z, Nakamura K, Terashima T. LPT(Ⅱ)-CSTBTTM(Ⅲ)for high voltage application with ultra robust turn-off capability utilizing novel edge termination design [C]//International Symposium on Power Semiconductor Devices and ICs. Bruges, Belgium, 2012: 25-28.

相似文献/References:

[1]朱荣霞,黄栋,马德军,等.功率VDMOS器件的新型SPICE模型[J].东南大学学报(自然科学版),2013,43(3):478.[doi:10.3969/j.issn.1001-0505.2013.03.006]
 Zhu Rongxia,Huang Dong,Ma Dejun,et al.Novel SPICE model for power VDMOS device[J].Journal of Southeast University (Natural Science Edition),2013,43(6):478.[doi:10.3969/j.issn.1001-0505.2013.03.006]

备注/Memo

备注/Memo:
作者简介: 夏晓娟(1983—),女,博士,讲师;孙伟锋(联系人),男,博士,教授,博士生导师,swffrog@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61274080)、江苏省自然科学基金资助项目(BK2011753).
引文格式: 夏晓娟,吴逸凡,祝靖,等.600 V VDMOS器件的反向恢复热失效机理[J].东南大学学报:自然科学版,2013,43(6):1243-1247. [doi:10.3969/j.issn.1001-0505.2013.06.021]
更新日期/Last Update: 2013-11-20